

Lecture Notes in Computer Science 5256
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Shaoying Liu Tom Maibaum
Keijiro Araki (Eds.)

Formal Methods and
Software Engineering

10th International Conference
on Formal Engineering Methods, ICFEM 2008
Kitakyushu-City, Japan, October 27-31, 2008
Proceedings

13

Volume Editors

Shaoying Liu
Hosei University, Faculty of Computer and Information Sciences
3-7-2 Kajino-cho Koganei-shi, Tokoy 184-8584, Japan
E-mail: sliu@hosei.ac.jp

Tom Maibaum
McMaster University, Department of Computing and Software
1280 Main St West, Hamilton ON, L8S 4K1, Canada
E-mail: tom@maibaum.org

Keijiro Araki
Kyushu University
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering
744 Motooka, Nishi-ku, Fukuoka 812-8581,Japan
E-mail: araki@csce.kyushu-u.ac.jp

Library of Congress Control Number: 2008937804

CR Subject Classification (1998): D.2, D.2.4, D.3, F.3

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-88193-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88193-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12538577 06/3180 5 4 3 2 1 0

Preface

Formal engineering methods are intended to offer effective means for integra-
tion of formal methods and practical software development technologies in the
context of software engineering. Their purpose is to provide effective, rigorous,
and systematic techniques for significant improvement of software productivity,
quality, and tool supportability. In comparison with formal methods, a distinct
feature of formal engineering methods is that they emphasize the importance
of the balance between the qualities of simplicity, visualization, and preciseness
for practicality. To achieve this goal, formal engineering methods must be de-
veloped on the basis of both formal methods and existing software technologies
in software engineering, and they must serve the improvement of the software-
engineering process.

ICFEM 2008 marks the tenth anniversary of the first ICFEM conference,
which was held in Hiroshima in 1997. It aims to bring together researchers and
practitioners who are interested in the development and application of formal
engineering methods to present their latest work and discuss future research
directions. The conference offers a great opportunity for researchers in both
formal methods and software engineering to exchange their ideas, experience,
expectation and to find out whether and how their research results can help
advance the state of the art.

This volume contains the papers presented at ICFEM 2008, held October
27–31, 2008 at the Kitakyushu International Conference Center, Kitakyushu
City, Japan. There were 62 submissions, each of which was reviewed by three
Program Committee members. The committee decided to accept 20 papers based
on originality, technical contribution, presentation, and relevance to formal en-
gineering methods. We sincerely thank the Program Committee members and
their co-reviewers for their professional work and great effort in the paper re-
viewing and selection process. We also thank the three keynote speakers, Takuya
Katayama, Jeff Offutt, and John Hatcliff, for their contributions to the confer-
ence program. Professor Katayama gave a talk on how formal methods can be
made acceptable by industry. Professor Offutt presented a talk on how program-
mers and testers could use formal methods in practice; and Professor Hatcliff
spoke about contract-based reasoning for verification and certification of secure
information-flow policies in industrial products.

In addition to the conference’s main program, two workshops were organized.
One was the First IEEE International Workshop on UML and Formal Methods
(UML&FM 2008) and the other was the First International Workshop on For-
mal Methods Education and Training (FMET 2008). We thank the workshop
organizers for their great efforts and contributions to the conference.

ICFEM 2008 was jointly organized by Kyushu University and Hosei Univer-
sity. It was sponsored by the ICFEM Organizing Committee and supported by

VI Preface

the IEEE Fukuoka Section, the Software Engineers Association of Japan (SEA),
the West Japan Industry and Trade Convention Association and several other
organizations. The EasyChair system was used to manage the submissions, re-
viewing, paper selection, and proceedings production. We would like to thank
the EasyChair team for a very useful tool.

August 2008 Shaoying Liu
Tom Maibaum

Keijiro Araki

Organization

Conference Chairs

General Chair Keijiro Araki Kyushu University, Japan
Program Chairs Shaoying Liu Hosei University, Japan

Tom Maibaum McMaster University, Canada
Publicity Chair Yoichi Omori Kyushu University, Japan
Tutorial Chair Fumiko Nagoya Hosei University, Japan

Program Committee

Nazareno Aguirre Colin Fidge Anders Ravn
Toshiaki Aoki John Fitzgerald Ken Robinson
Keijiro Araki Marcelo Frias Shin Sahara
David Basin Stefania Gnesi Davide Sangiorgi
Michael Butler Mike Hinchey Wuwei Shen
Ana Cavalcanti Soon-Kyeong Kim Jing Sun
Steve Cha Peter Gorm Larsen Koichi Takahashi
Jessica Chen Kung-Kiu Lau Testuo Tamai
Yuting Chen Mark Lawford T.H. Tse
Yoonsik Cheon Michael Leuschel Farn Wang
S.C. Cheung Xuandong Li Jim Woodcock
Peter J. Clarke Zhiming Liu Wang Yi
Jim Davies Huaikou Miao Jian Zhang
Jin Song Dong Shin Nakajima Hong Zhu
Zhenhua Duan Michael Poppleton

Local Organization

Keijiro Araki
Masumi Toyoshima
Shigeru Kusakabe

External Reviewers

Jean-Raymond Abrial Gihwon Kwon Daniel Plagge
Andrew Allen Woo-Jin Lee Shengchao Qin
Djuradj Babich Florian Letombe GermÃn Regis
Richard Banach Hui Liang Yuxiang Shi
Heung-Seok Chae Yang Liu Jane Sinclair

VIII Organization

Zhenbang Chen Paulo Matos Colin Snook
Wei Chen Franco Mazzantti Christoph Sprenger
Alessandro Fantechi Manuel Mazzara Jun Sun
Bernd Fischer Hiroshi Mochio Kenji Taguchi
Dilian Gurov Charles Morisset Toshinori Takai
Thai Son Hoang Tsz-Hin Ng Izumi Takeuti
Christian Haack Naoya Nitta James Welch
Eun Young Kang Ioannis Ntalamagkas Letu Yang
Raman Kazhamlakin Joseph Okika Kenro Yatake
John Knudsen Yoichi Omori Jianhua Zhao
Pavel Krcal Lucian Patcas Xian Zhang
Shigeru Kusakabe Mark Pavlidis

ICFEM Steering Committee

Keijiro Araki Kyushu University, Japan
Jin Song Dong National University, Singapore
Chris George UNU-IIST, Macao
Jifeng He Chair, East China Normal University, China
Mike Hinchey University of Limerick, Ireland
Shaoying Liu Hosei University, Japan
John McDermid University of York, UK
Tetsuo Tamai University of Tokyo, Japan
Jim Woodcock University of York, UK

Table of Contents

Invited Talks

How Can We Make Industry Adopt Formal Methods? 1
Takuya Katayama

Programmers Ain’t Mathematicians, and Neither Are Testers 2
Jeff Offutt

Contract-Based Reasoning for Verification and Certification of Secure
Information Flow Policies in Industrial Workflows . 3

John Hatcliff

Specification and Verification

Specifying and Verifying Event-Based Fairness Enhanced Systems 5
Jun Sun, Yang Liu, Jin Song Dong, and Hai H. Wang

Modelling and Proof of a Tree-Structured File System in Event-B and
Rodin . 25

Kriangsak Damchoom, Michael Butler, and Jean-Raymond Abrial

Testing

Conformance Testing Based on UML State Machines: Automated Test
Case Generation, Execution and Evaluation . 45

Dirk Seifert

An Approach to Testing with Embedded Context Using Model
Checker . 66

Lihua Duan and Jessica Chen

Requirements Coverage as an Adequacy Measure for Conformance
Testing . 86

Ajitha Rajan, Michael Whalen, Matt Staats, and Mats P.E. Heimdahl

Verification 1

Decomposition for Compositional Verification . 105
Björn Metzler, Heike Wehrheim, and Daniel Wonisch

A Formal Soundness Proof of Region-Based Memory Management for
Object-Oriented Paradigm . 126

Florin Craciun, Shengchao Qin, and Wei-Ngan Chin

X Table of Contents

Program Models for Compositional Verification . 147
Marieke Huisman, Irem Aktug, and Dilian Gurov

Model Checking and Analysis

A Unified Model Checking Approach with Projection Temporal
Logic . 167

Zhenhua Duan and Cong Tian

Formal Analysis of the Bakery Protocol with Consideration of
Nonatomic Reads and Writes . 187

Kazuhiro Ogata and Kokichi Futatsugi

Towards Abstraction for DynAlloy Specifications . 207
Nazareno M. Aguirre, Marcelo F. Frias, Pablo Ponzio,
Brian J. Cardiff, Juan P. Galeotti, and Germán Regis

Verification 2

Partial Translation Verification for Untrusted Code-Generators 226
Matthew Staats and Mats P.E. Heimdahl

A Practical Approach to Partiality – A Proof Based Approach 238
Farhad Mehta

A Representative Function Approach to Symmetry Exploitation for
CSP Refinement Checking . 258

Nick Moffat, Michael Goldsmith, and Bill Roscoe

Tools

Probing the Depths of CSP-M: A New fdr-Compliant Validation
Tool . 278

Michael Leuschel and Marc Fontaine

Practical Automated Partial Verification of Multi-paradigm Real-Time
Models . 298

Carlo A. Furia, Matteo Pradella, and Matteo Rossi

Application of Formal Methods

Specifying and Verifying Sensor Networks: An Experiment of Formal
Methods . 318

Jin Song Dong, Jing Sun, Jun Sun, Kenji Taguchi, and Xian Zhang

Table of Contents XI

Correct Channel Passing by Construction . 338
Chao Cai, Zongyan Qiu, Xiangpeng Zhao, and Hongli Yang

Semantics

A Process Semantics for BPMN . 355
Peter Y.H. Wong and Jeremy Gibbons

A Formal Descriptive Semantics of UML . 375
Lijun Shan and Hong Zhu

Author Index . 397

How Can We Make Industry Adopt Formal

Methods?

Takuya Katayama

Japan Advanced Institute of Science and Technologies

Despite a long history of technical development of formal methods and their suc-
cess in advanced system developments, they are not well recognized nor accepted
as effective and standard methodology in industrial and commercial software de-
velopment. This fact should be considered seriously if we evaluate their intrinsic
technical superiority. Though ignorance of the new technologies will be one rea-
son for the reluctance of industry to use formal methods, we should also check if
current formal methods will be enough for the real software development prac-
tices in industry. In this talk, based on interviews with software engineers and
managers, these issues will be addressed including proposal of formal methods
adoptable in industry.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Programmers Ain’t Mathematicians, and

Neither Are Testers

Jeff Offutt

George Mason University, USA

Formal methods have been developed for decades. An early promise was that we
could use formal methods to ”prove” our programs correct. We have also tried to
use formal methods to completely specify functional behavior of programs and
to partially specify specific aspects of software behavior. Research into formal
methods have led to weaker techniques to ”model” functional behavior, less
completely and less precisely, but in ways that are easier to use. Despite these
years of activity, formal methods are still seldom used in industry. As software
engineering researchers, we are compelled to take the view that there must be a
path from our research to actual use in industry, where real software developers
use our ideas to help create real, and better, software. Thus we must ask, are
formal methods a solution in search of a problem?

In this talk, I will draw a distinction between mathematical thinking, which is
required to develop formal models of software behavior, and engineering think-
ing, which is required to develop working software. In a broad sense, formal
methods are used to create abstractions, and abstraction should be used to han-
dle complexity, not to ignore it. The talk will explore this distinction and suggest
specific ways formal methods can be successfully integrated into software devel-
opment, testing and education. Mathematicians who specify software models
and design software tests should delve into this abstraction, using formal engi-
neering methods to help real programmers build real software, faster, better and
cheaper.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Contract-Based Reasoning for
Verification and Certification of

Secure Information Flow Policies in
Industrial Workflows�

John Hatcliff

SAnToS Laboratory
Kansas State University

Manhattan, KS 66506, USA
hatcliff@cis.ksu.edu

http://www.cis.ksu.edu/santos

Abstract. Successful transfer of formal engineering methods from academia to
industrial development depends on a variety of factors: a proper understanding
of the industrial development context, effective and usable technology that can
be integrated with development workflows to provide a compelling solution to
serious development challenges, “buy-in” from industrial developers and man-
agement, an appropriate business model for supporting the deployed technology,
plus a lot of luck. I describe how many of these factors are manifesting them-
selves in an effort by our research group to transition rigorous static analyses and
novel Hoare-style logics into a large industrial development process for informa-
tion assurance and security applications.

The applications that we are targeting address the following problem: inter-
national infrastructure and defense forces are increasingly relying on complex
systems that share information with multiple levels of security (MLS). In such
systems, there is a strong tension between providing aggressive information flow
to gain operational and strategic advantage while preventing leakage to unau-
thorized parties. In this context, it is exceedingly difficult to specify and certify
security policies, and produce evidence that a system provides end-to-end trust.

In the past, verification and certification obligations in this domain have been
met by using heavy-weight theorem proving technology that requires many man-
ual steps or by light-weight contract-based static analyses that are too imprecise
for specifying and verifying crucial information flow properties. In this talk, I
will explain how our research team is (a) building integrated tool support for au-
tomatically discovering and visualizing information flows through programs and
architectures, and (b) providing code-integrated software contracts for specifying
information flow policies, and (c) applying synergistic blends of static analyses
and automated reasoning based on weakest-precondition calculi to aid develop-
ers in automatically discharging verification obligations. These techniques aim
to hit a “sweet spot” that provides greater automation and developer integration

� This work was supported in part by the US National Science Foundation (NSF) awards
0454348 and CAREER award 0644288, the US Air Force Office of Scientific Research
(AFOSR), and Rockwell Collins.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 3–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 J. Hatcliff

than previous theorem-proving-based approaches while offering increased pre-
cision over previous static-analysis-based frameworks. Throughout the presenta-
tion, I will assess approaches/strategies that have been successful in moving our
research results into industrial practice and summarize challenges that remain.

Acknowledgments

This talk is based on joint work with researchers from Kansas State including Torben
Amtoft, Robby, Edwin Rodrı́guez, Jonathan Hoag, Todd Wallentine and Loai Zomlot,
and with David Greve from Rockwell Collins, Advanced Technology Center.

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. In: 33rd Principles of Programming Languages (POPL), pp. 91–102 (2006)

2. Amtoft, T., Banerjee, A.: A logic for information flow analysis with an application to forward
slicing of simple imperative programs. Science of Comp. Prog. 64(1), 3–28 (2007)

3. Amtoft, T., Banerjee, A.: Verification condition generation for conditional information flow.
In: 5th ACM Workshop on Formal Methods in Security Engineering (FMSE), pp. 2–11
(2007); A long version, with proofs, appears as technical report KSU CIS TR 2007-2

4. Amtoft, T., Hatcliff, J., Rodrı́guez, E., Robby,, Hoag, J., Greve, D.: Specification and check-
ing of software contracts for conditional information flow. In: Cuellar, J., Maibaum, T.S.E.
(eds.) FM 2008. LNCS, vol. 5014. Springer, Heidelberg (2008)

5. Chapman, R., Hilton, A.: Enforcing security and safety models with an information flow
analysis tool. In: SIGAda 2004, Atlanta, Georgia, pp. 39–46. ACM Press, New York (2004)

6. Greve, D., Wilding, M., Vanfleet, W.M.: A separation kernel formal security policy. In: 4th
International Workshop on the ACL2 Prover and its Applications (ACL2 2003) (2003)

7. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and verification
of data separation in a separation kernel for an embedded system. In: 13th ACM Conference
on Computer and Communications Security (CCS 2006), pp. 346–355 (2006)

8. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foundation for
control dependence and slicing for modern program structures. TOPLAS 29(5) (August
2007); In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444. Springer, Heidelberg (2005)

9. Ranganath, V.P., Hatcliff, J.: Slicing concurrent Java programs using Indus and Kaveri. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 9(5-6), 489–504 (2007);
Special section FASE 2004/2005.

10. Rushby, J.: The design and verification of secure systems. In: 8th ACM Symposium on Op-
erating Systems Principles, vol. 15(5), pp. 12–21 (1981)

11. Rushby, J., DeLong, R.: Compositional security evaluation: The MILS approach,
http://www.csl.sri.com/∼rushby/slides/iccc07.pdf

Specifying and Verifying Event-Based Fairness
Enhanced Systems

Jun Sun1, Yang Liu1, Jin Song Dong1, and Hai H. Wang2

1 School of Computing,
National University of Singapore

{sunj,liuyang,dongjs}@comp.nus.edu.sg
2 School of Electronics and Computer Science,

University of Southampton
hw@ecs.soton.ac.uk

Abstract. Liveness/Fairness plays an important role in software specification,
verification and development. Existing event-based compositional models are
safety-centric. In this paper, we describe a framework for systematically speci-
fying and verifying event-based systems under fairness assumptions. We intro-
duce different event annotations to associate fairness constraints with individual
events. Fairness annotated events can be used to embed liveness/fairness assump-
tions in event-based models flexibly and naturally. We show that state-of-the-art
verification algorithms can be extended to verify models under fairness assump-
tions, with little computational overhead. We further improve the algorithm by
other model checking techniques like partial order reduction. A toolset named
PAT has been developed to verify fairness enhanced event-based systems. Exper-
iments show that PAT handles large systems with multiple fairness assumptions.

1 Introduction

Critical system requirements like safety, liveness and fairness play important roles in
system/software specification, verification and development. Safety properties ensure
that something undesirable never happens. Liveness properties state that something de-
sirable must eventually happen. Fairness properties state that if something is enabled
sufficiently often, then it must eventually happen. Often, fairness assumptions are nec-
essary to prove liveness properties.

Over the last decades, specification and verification of safety properties have been
studied extensively. There have been many languages and notations dedicated to safety-
critical systems, e.g., Z, VDM, CCS and CSP. The concept of liveness itself is problem-
atic [17]. Fairness constraints have been proved to be an effective way of expressing
liveness, not mentioning that itself is important in system specification and verification.
For instance, without fairness constraints, verifying of liveness properties may often
produce counterexamples which are due to un-fair executions, e.g., a process or choice
is infinitely ignored. State-based fairness constraints have been well studied in automata
theory based on accepting states, e.g., in the setting of Büchi/ Rabin/Streett/Muller au-
tomata. It has been observed that the notion of fairness is not easily combined with
the bottom-up type of compositionality (of process algebra for instance [23]), which is
important for attacking the complexity of system development.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 5–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 J. Sun et al.

A common practice of verifying liveness relies on explicitly stating all fairness as-
sumptions as premises of the liveness properties. This approach is not feasible if there
are many fairness constraints. Note that it is relatively straightforward to verify whether
the system satisfies a fairness property. It is verification under multiple fairness assump-
tions which may be infeasible. For instance, a method to prove that a program satisfies
some property is Linear Temporal Logic (LTL) model checking. Given an LTL formula
φ, the model checker transforms the negation of φ into a Büchi automaton, builds the
product of the automaton and the program and then checks this product for emptiness.
The size of the constructed Büchi automaton is exponential to the length of φ. A for-
mula composing of many fairness premises results in a huge Büchi automaton and thus
makes model checking infeasible. For example, SPIN is a rather popular LTL model
checker [15]. The algorithm it uses for generating Büchi automata handles only a lim-
ited number of fairness constraints. The following table shows experiments on the time
and space needed for SPIN to generate the automaton from standard notion of fairness,
in particular, justice and compassion [16].

Prop. n Time (Sec.) Memory #Büchi States
(
∧n

i=1 ��pi) ⇒ ��q 1 0.08 466Kb 74
same above 3 4.44 27MB 1052
same above 5 more than 3600 more than 1Gb −

(
∧n

i=1(��pi ⇒ ��qi)) ⇒ ��s 1 0.13 487.268 134
same above 2 1.58 10123.484 1238
same above 3 30.04 55521.708 4850
same above 4 4689.24 more than 1Gb −

The experiments are made on a 3.0GHz Pentium IV CPU and 1 GB memory executing
SPIN 4.3. The results show that it takes a non-trivial amount of time to handle 5 fairness
constraints. In order to overcome this problem, SPIN offers an option to handle weak
fairness on the level of processes. However, it may not be always sufficient. Process-
level fairness states that all enabled events from different processes must be engaged or
disabled eventually, which is overwhelming sometimes. For instance, it is reasonable
to require that a submitted request must eventually be served, while it is not to require
that always eventually there is a request. Another approach [16] to model check under
fairness assumptions is to model fairness using global accepting states (or in the form of
justice/compassion condition [16]). For instance, a run accepted by a Büchi automaton
must visit at least one accepting state infinitely often. This approach is not applicable to
event-based compositional systems.

In [17], a language independent definition of event-based fairness has been proposed
and studied. Let e be an event. Let �, � be the temporal operators which informally
reads as ‘eventually’ and ‘always’ respectively.

wf (e) =̂ ��(e is enabled) ⇒ ��(e is engaged)
sf (e) =̂ ��(e is enabled) ⇒ ��(e is engaged)

The weak fairness wf (e) asserts that if an event e eventually becomes enabled forever,
infinitely many occurrences of the event steps must be observed. The strong fairness

Specifying and Verifying Event-Based Fairness Enhanced Systems 7

sf (e) asserts that if e is infinitely often enabled (or in other words, repeatedly enabled),
infinitely many occurrences of the event must be observed. Strong fairness implies weak
fairness. A system satisfies a fairness constraint if and only if every run of the system
satisfies the fairness constraint.

Partly inspired by the work above, we propose an alternative approach for specifying
fairness constraints, with efficient verification in mind. Instead of stating the fairness as-
sumptions as a part of the property to verify or additional global accepting states, they
are embedded in the compositional models. We introduce different event annotations to
associate fairness assumption with individual events. Event-based annotation allows us
to model fairness naturally and flexibly. For instance, by annotating all events weak fair,
we achieve process-level fairness (as offered in SPIN). Next, we investigate automated
verification of models with event-based fairness. We show that existing state-of-the-
art verification algorithms can be extended to handle event-based fairness with little
computational overhead. An on-the-fly model checking algorithm is developed. The al-
gorithm is further improved by techniques like partial order reduction. A toolset named
PAT (stands for Process Analysis Toolset) has been developed to realize the algorithms
(which also supports functionalities like standard model checking, model simulation,
etc). Experiment results show that PAT handles non-trivial systems with multiple fair
constraints efficiently.

Our contribution includes an approach to model fairness in event-based composi-
tional system models and an on-the-fly model checking algorithm with partial order
reduction for verifying those models. This paper is related to works on specification
and verification of liveness and fairness, e.g., verification under weak fairness in SPIN
and early works discussing liveness associated with events in the framework of Promela,
CCS or CSP, evidenced in [15, 7, 6, 21]. One way of capturing fairness is to alter the lan-
guage semantics so that all events are fairly treated (e.g., [15, 21, 3]), i.e., the semantics
of parallel composition is enhanced to be fair. From our point of view, the difference
between parallel and sequential processes may be irrelevant and fairness shall be inde-
pendent of one particular operator. In practice, it may be that only certain events need
to fulfill fairness constraints. For instance, a common requirement is that “some ac-
tion must eventually occur if some other action occurs” (i.e., compassion conditions).
In other works [7, 6], events or processes are annotated with special markings to cap-
ture fairness. However, previous approaches do not easily combine with the bottom-up
compositionality of process algebra, i.e., the fairness constraints may be lost once the
process is composed with others. In this work, annotations are used to associate differ-
ent kinds of fairness assumptions with relevant events in the relevant module/process,
which may yet has global effects. Moreover, we develop automated verification support
for our notion of fairness. We remark that the concept of event-based fairness is not lim-
ited to process algebras. Specification of fairness in programming languages has been
discussed in the line of works by Apt, Francez and Katz [2]. Event-based fairness may
allow fairness constraints that may not be feasible (and thus violates one of the princi-
ples in [2]), which makes our verification techniques crucial. Our works on verification
of models with embedded fairness constraints are related to previous works on verifica-
tion under fairness assumptions [16, 18, 13], in which liveness/fairness constraints are
either specified using temporal logic formulae or captured using global accepting states.

8 J. Sun et al.

We use a different way of specifying fairness constraints and hence our model checking
algorithm is different from theirs. We also extend our algorithm with techniques like
partial order reduction to handle large systems. This work is remotely related to our
previous works on verification of event-based specifications [10, 9, 19].

The remainder of the paper is organized as follows. Section 2 reviews the input lan-
guage of PAT and its semantics. Section 3 introduces our event annotations. Section 4
presents and evaluates the on-the-fly model checking algorithm and partial order reduc-
tion. Section 5 concludes the paper.

2 Background

Without loss of generality, we present our ideas using a simple compositional language
which supports concurrency, multi-threaded synchronization, shared variables and as-
signments. In the next section, we will extend this language with fairness annotations.

A model is composed of a set of global variables and a set of process definitions.
One of the processes is identified by the starting process (as the main method in Java),
which captures the system behaviors after initialization. A process is defined as using
the following constructs. Most of the compositional operators are borrowed from the
classic CSP [14].

P =̂ Stop | Skip | e → P1 | P1; P2 | P1 � P2 | P1 � P2

| P1 � b � P2 | [b] • P | P1 � P2 | P1 |[X]|P2

where b is a Boolean expression, X is a set of events and e is an event. Note that e could
be an abstract event (single or compound) or an assignment (e.g., x := x + 1). Process
Stop does nothing but deadlocks. Process Skip terminates successfully. Event prefixing
e → P is initially willing to engage in event e and behaves as P afterward. Skip = � →
Stop where � is the termination event. The sequential composition, P1; P2, behaves
as P1 until its termination and then behaves as P2. A choice between two processes is
denoted as P1 � P2 (for external choice) or P1 � P2 (for nondeterminism). A choice
depending on the truth value of a Boolean expression is written as P1 � b � P2. If
b is true, the process behaves as P1, otherwise P2. The state guard [b] • P is blocked
until b is true and then proceeds as P, i.e., a guarded command. P1 � P2 behaves as
P1 until the first event of P2 is engaged, then P1 is interrupted and P2 takes control.

One reason for using a CSP-based language is to study fairness assumptions in a
setting with multi-threaded lock-step synchronization. Let ΣP be the alphabet of P
which excludes τ (internal action) and �. Note that alphabets can be manually set or by
default be the set of events constituting the process expression. Parallel composition of
processes is written as P |[X]|Q . Events in X must be synchronized by both processes.
If X is empty, P and Q run in parallel independently. X is skipped if it is exactly
ΣP ∩ ΣQ . Multiple processes may run in parallel, written as P1 ‖ P2 ‖ · · · ‖ Pn .
Shared events must be synchronized by all processes whose alphabet contains the event.
Recursion is allowed by process referencing. The semantics of recursion is defined as
Tarski’s weakest fixed-point. The valuation of the variables is a set of pairs which map
a variable to its current value. A system state is a pair (P ,V) where P is a process
expression and V is the valuation of the global variables.

Specifying and Verifying Event-Based Fairness Enhanced Systems 9

Example 1. The classic dining philosophers example [14] is used as a running example.

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i → put .i .(i + 1)%N →
put .i .i → Phil(i)

Fork(i) = get .i .i → put .i .i → Fork(i) �

get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i)

College(N) = ‖N−1

i=0
(Phil(i) ‖ Fork(i))

where N is the number of philosophers, get .i .j (put .i .j) is the action of the i-th
philosopher picking up (putting down) the j -th fork. Process Phil(i) models the be-
haviors of the i-th philosopher. Process Fork(i) models the behaviors of the i-th fork.
Process College(N) is the indexed parallel composition of multiple philosophers and
forks. It is known that College(N) deadlocks when each dining philosopher picks up
one fork. By asking one of the philosophers to pick up the forks in a different order, the
system becomes deadlock-free. �

We focus on the operational semantics in this paper. The operational semantics for CSP
presented in [4] has been extended with shared variables (presented in [28]). The sets
of behaviors of processes can equally and equivalently be extracted from the opera-
tional semantics, thanks to congruence theorems. Fairness properties state that an event
which is either repeatedly or continuously enabled must eventually occur. They there-
fore affect only the infinite, and not finite, traces of a process. We present an infinite
trace semantics, inspired by the infinite trace semantics for CSP [25]. Note that finite
traces are extended to infinite ones in a standard way, i.e., by attaching infinite number
of idling events to the rear. Let Σ∗ and Σω be the set of finite and infinite sequences of
events respectively.

Definition 1 (Infinite Traces). Let P be a process and V be a valuation of the data
variables. The set of infinite traces is written as inftr(P ,V). An infinite trace t̃r : Σω

is in inftr(P ,V) if and only if there exists an infinite sequence of P̃ and Ṽ such that

– P̃(0) = P and Ṽ (0) = V ,

– for all i , (P̃ (i), Ṽ (i))
t̃r(i)⇒ (P̃(i + 1), Ṽ (i + 1))

where ⇒ is the smallest transition relation defined by the operational semantics [28].

An infinite run of a process P with variable valuation V is an alternating infinite se-
quence of states and events (P̃(0), Ṽ (0)), ã(0), · · · (P̃(i), Ṽ (i)), ã(i), · · · which con-
forms to the operational semantics. An infinite sequence of events is a trace if and only
if there is a run with the exact same sequence of events. A state (P ′,V ′) is reachable
from (P ,V) if and only if there is a finite run from (P ,V) to (P ′,V ′).

Definition 2 (Enabledness). Let P be a process. Let V be a valuation of the data
variables. enabled(P ,V) = {e : Σ | ∃P ′,V ′ • (P ,V) e⇒ (P ′,V ′)}.

Given P and V , an event is enabled if and only if it is in enabled(P ,V). It is disabled
if it is not enabled. Note that given a parallel composition P |[X]|Q , an event in X is
enabled in the composition if and only if it is enabled in both P and Q .

10 J. Sun et al.

It is known that CSP (as well as CCS) lacks the notion of liveness or fairness [14,
6]. An event can be enabled forever but never be engaged, or an event may be enabled
infinitely often but never been engaged. In the paper, we assume properties are stated
in the form of LTL formulae. Different from stand LTL, we adopt the work presented
in [5] so that events may be used to form LTL formulae. A desirable property for process
College(5) is ��eat .0, i.e., always eventually the 0-th philosopher eats and thus never
starves. Note that this property is not true, i.e., College(5) �� ��eat .0. The following
traces may be returned as counterexamples.

〈get .0.1, get .1.2, get .2.3, get .3.4, get .4.0〉 – T0
〈get .3.4, get .3.3, eat .3, put .3.4, put .3.3〉ω – T1
〈get .1.2, get .1.1, eat .1, put .1.2, put .1.1〉ω – T2

Assume that given a trace tr , trω repeats tr infinitely. T0 is a trace which leads to
the deadlock situation, in which case all philosophers starve. T1 and T2 are returned
because the model lacks of both weak and strong fairness. In T1’s scenario, the 3-
rd philosopher greedily gets the forks and eats forever. This counterexample is due
to lack of weak fairness, i.e., the event get .0.1 is always enabled but never engaged.
In T2’s scenario, the 1-st philosopher greedily gets the forks and eats forever. This
counterexample is due to lack of strong fairness, i.e., the event get .0.1 is repeatedly
enabled (after event put .1.1 and disabled after event get .1.1) but never engaged.

In order to verify that the system does satisfy the property under the assumption that
the system is (strongly) fair and the deadlock situation never occurs, we may verify the
following property,

(
∧N−1

i=0 ��get .i .(i + 1)%N) – C1
∧ ��put .1.2 – C2
⇒ ��eat .0

where C1 and C2 are stated as premises of the property. C1 states that each philosopher
must always eventually get his first fork. C2 states that one of the philosopher (in this
case, the 1-st) must eventually put down a fork. It is used to avoid the deadlock situation.
Though this property is true, automata-based verification is deficient because of its size.

3 Event Annotations

In this section, we introduce a way of modeling event-based fairness, i.e., by annotating
an event with fairness assumptions. Given an event e, four different annotations can be
used to associate different fairness assumptions with e. The annotations are summarized
in Table 1. In the following, we discuss them one by one.

A weak fair event is written as wf (e). Event wf (e) plays the same role as e except
that it carries a weak fairness constraint. That is, if a weak fair event is always enabled, it
must be eventually engaged. In other words, the system must move beyond a state where
there is a weak fair event enabled. Weak fair events allow us to express weak fairness
constraints naturally. It can be shown that both weak and strong fairness are expressible
using weak fair events (as strong fairness can be transformed to weak fairness by paying

Specifying and Verifying Event-Based Fairness Enhanced Systems 11

Table 1. Event-based Fairness Annotations

Annotation Name Semantics

wf (e) weak fair event ��e is enabled ⇒��e is engaged

sf (e) strong fair event ��e is enabled ⇒��e is engaged

wl(e) weak live event ��e is ready ⇒��e is engaged

sl(e) strong live event ��e is ready ⇒��e is engaged

the price of one variable [16]). However, strong fairness constraints may require more
than what fair events can offer in a natural way. Therefore, we introduce the notion of
strong fair events to capture strong fairness elegantly. A strong fair event, written as
sf (e), must be engaged if it is repeatedly enabled.

Example 2. The following demonstrates how we may achieve process level weak fair-
ness (as the option offered in SPIN).

fPhil(i) = wf (get .i .(i + 1)%N) → wf (get .i .i) → wf (eat .i)
→ wf (put .i .(i + 1)%N) → wf (put .i .i) → fPhil(i)

fFork(i) = wf (get .i .i) → wf (put .i .i) → fFork(i) �

wf (get .(i − 1)%N .i) → wf (put .(i − 1)%N .i) → fFork(i)

fCollege(N) = ‖N−1

i=1
(fPhil(i) ‖ fFork(i))

The idea is to annotate all events in a process weak fair so that an enabled event of
the process is not ignored forever. Model checking ��eat .0 against fCollege(5) may
return T0 and T2 as counterexamples but not T1. �

Example 3. The following specifies the Peterson’s algorithm for mutual exclusion.
Without fairness assumptions, the algorithm allows unbounded overtaking, i.e., a pro-
cess which intends to enter the critical section may be overtaken by other processes
infinitely (refer to [1] for a concrete example).

P(i , j) = (sf (pos [i] := j) → wf (step[j] := i) →
[step[j] �= i ∨ ∀ k | k �= i • pos [k] < j] • P(i , j + 1))

� j < N � (wf (cs .i) → wf (pos [i] := 0) → P(i , 1))

Peterson(N) = ‖N

i=1
P(i , 1)

where N is the number of processes and pos , step are two lists of integers (with initial
value 0) of size N − 1 and N respectively. Infinite overtaking is evidenced by showing
that Peterson(N) �� �(pos [i] > 0 ⇒ �cs .i). Once a process has indicated that
its intention to enter the critical section (by setting pos [i] and step[j]), the assignment
pos [i] := j may be enabled only repeatedly. This is because it depends on the condition
[step[j] �= i ∨ ∀ k | k �= i • pos [k] < j]. Because the assignment step[j] :=
i is not synchronized or guarded, weak fairness is sufficient to guarantee it will be
engaged once enabled. The weak fairness associated with cs .i and pos [i] := 0 prevents
the system from idling forever. Notice that this is not necessary if we assume that the
system shall never idle forever unless it is deadlocked. The above model guarantees that
Peterson(N) � �(pos [i] > 0 ⇒ �cs .i). �

12 J. Sun et al.

In order to guarantee a system is completely strongly fair, communicating events or
events guarded by conditions must be annotated with strong fairness, whereas weak
fairness is sufficient for local actions which are not guarded. Weak/strong fairness an-
notation allows us to model event-based fairness flexibly. In practice, even stronger
fairness may be necessary. One example of a fairness constraint which is very strong
is the notion of accepting states in Büchi automata, i.e., the system must keep moving
until entering at least one accepting state (and do that infinitely often). Other examples
of stronger fairness include the compassion conditions [16]. In order to capture these
fairness constraints, we introduce two additional fairness annotations, which have the
capability of driving the system to reach certain point. The additional annotations relies
on the concept of “readiness” so that system behaviors may be restricted by fairness
assumptions which are associated with events that are not even enabled.

Definition 3 (Readiness). Let P be a process. Let V be a valuation of the variables.

ready(Stop,V) = ready(Skip,V) = ∅
ready(e → P ,V) = {e}
ready(Skip; Q ,V) = ready(Q ,V)
ready(P ; Q ,V) = ready(P ,V) – if P �= Skip.
ready(P � Q ,V) = ready(P ,V) ∪ ready(Q ,V)
ready(P � Q ,V) = ready(P ,V) ∪ ready(Q ,V)
ready(P � Q ,V) = ready(P ,V) ∪ ready(Q ,V)
ready(P � b � Q ,V) = ready(P ,V) – if V � b.
ready(P � b � Q ,V) = ready(Q ,V) – if V � ¬ b.
ready([b] • P ,V) = ready(P ,V) – if V � b.
ready([b] • P ,V) = ∅ – if V �� b.
ready(P |[X]|Q ,V) = ready(P ,V) ∪ ready(Q ,V)

Event e is ready given process P and valuation V if and only if e ∈ ready(P ,V). Note
that enabledness and readiness are similarly defined for all process expressions except
parallel composition. The difference is captured by the last line of the above definition.
Given process P |[X]|Q , an event in X is enabled if and only if it is enabled in both P
and Q , whereas it is ready if it is ready in either P or Q . Intuitively, an event is ready
if and only if one thread of control is ready to engage in it. An enabled event must be
ready. A weak live event, written as wl(e), must be engaged if it is always ready (not
necessarily enabled). Similarly, a strong live event, written as sl(e), must be engaged
if it is repeated ready1. Because whether an event is ready or not depends on only one
process (in a parallel composition), live events may be used to design a controller which
drives the execution of a given system.

Example 4. Let LiftSystem be the modeling of a multi-lift system, which contains two
events turn on light and turn off light . In order to model that the light is always
eventually turned off, the LiftSystem may be replaced by LightSystem ‖ LightCon
where LightCon = turn on light → wl(turn off light) → LightCon . Because

1 A similar modeling concept is hot locations in Live Sequence Charts [8], which force the
system to move beyond.

Specifying and Verifying Event-Based Fairness Enhanced Systems 13

both events must be synchronized, whenever event turn on light is engaged, event
turn off light becomes ready. In this case, it remains ready until it is engaged. Thus,
by definition, the light must eventually be turned off. �

Example 5. With live events, the dining philosophers may be modified as follows,

lPhil(i) = wl(get .i .(i + 1)%N) → get .i .i → eat .i
→ put .i .(i + 1)%N → put .i .i → lPhil(i)

lFork(i) = get .i .i → wl(put .i .i) → lFork(i) �

get .(i − 1)%N .i → wl(put .(i − 1)%N .i) → lFork(i)

lCollege(N) = ‖N−1

i=1
(lPhil(i) ‖ lFork(i))

Model checking ��eat .0 against lCollege(5) returns true. Initially, wl(get .i .(i +
1)%N) is ready and therefore by definition, it must be engaged (since it is not possible
to make it not ready). Once get .i .(i+1)%N is engaged, wl(put .(i−1)%N .i) becomes
ready and thus the system is forced to execute until it is engaged. For the same reason,
wl(put .i .i) must be engaged afterwards. Once put .i .i is engaged, wl(get .i .(i+1)%N)
becomes ready again. Therefore, the system is forced to execute infinitely and fairly.
The traces which lead to the deadlock state is not returned as a counterexample. This is
because event wl(put .(i − 1)%N .i) is ready in the deadlock state. Hence the trace is
considered invalid because it does not satisfied the fairness assumption, i.e., the event
wl(put .(i−1)%N .i) is always ready but never engaged. Refer to Example 6 for further
explanation. �

The fairness annotations restrict the possible behaviors of the system. It thus results in
a smaller set of traces. Note that fairness constraints cannot be captured using structural
operational semantics. Therefore, a two-levels semantics is used to prune un-fair traces
from infinite traces. Let Σwf , Σsf , Σwl and Σsl be the set of all weak fair, strong fair,
weak live and strong live events respectively.

Definition 4 (Fair Traces). Let P be a process. Let V be a valuation of the data vari-
ables. The set of fair traces is written as ftraces(P ,V). An infinite sequence of events
t̃r : Σω is in ftraces(P ,V) if and only if there exists an infinite sequence of P̃ and Ṽ
such that

– t̃r is in inftr(P ,V),
– for all i , if there exists e : Σwf such that e is enabled at state (P̃(i), Ṽ (i)), there

exists j such that j ≥ i and t̃r(j) = e or e is not enabled at state (P̃(j), Ṽ (j)).
– for all i , if there exists e : Σsf such that e is enabled at state (P̃(i), Ṽ (i)), there

exists j such that j ≥ i and t̃r(j) = e or for all k such that k ≥ j , e is not enabled
at state (P̃(k), Ṽ (k)).

– for all i , if there exists e : Σwl such that e is ready at state (P̃(i), Ṽ (i)), there
exists j such that j ≥ i and t̃r(j) = e or e is not ready at state (P̃(j), Ṽ (j)).

– for all i , if there exists e : Σsl such that e is ready at state (P̃(i), Ṽ (i)), there
exists j such that j ≥ i and t̃r(j) = e or for all k such that k ≥ j , e is not ready
at state (P̃(k), Ṽ (k)).

14 J. Sun et al.

Compared to Definition 1, the additional constraint states that an infinite trace must be
fair. That is, whenever a weak fair (live) event is enabled (ready), later it must be either
engaged or become not enabled (ready); whenever a strong fair (live) event is enabled
(ready), either it becomes not enabled (ready) forever after some execution or it is even-
tually engaged. By definition, all traces in ftrace(P ,V) satisfy the fairness constraints
regarding the annotated events (see proof in [28]). Compared with previous propos-
als [6, 7, 3], our notion of fair events is more flexible and natural. For example, in [3]
fairness constraints only concern parallel composition, whereas in our setting fairness
concerns individual events and thus not only parallel composition but also choice and
others. For instance, the process P = sl(a) → b → P � sl(b) → a → P requires that
the choice must not be completely biased, i.e., both choices must eventually be taken.

CSP algebraic laws [14] are largely preserved in our extended semantics, e.g., the
symmetry and associativity laws of parallel composition. Nevertheless, a few do not
apply any more because of the weak/strong live events, e.g., a new expansion laws
for parallel composition is needed (refer to [28]). Moreover, the fairness might be
overwhelming so that the specification may become infeasible. For instance, given
P = wl(e) → P , ftraces(P ‖ (e → College(5)), ∅) = ∅. This specification is
not feasible because the fairness constraint can never be satisfied, i.e., event e can be
engaged only once. This boils down to the question on how to effectively verify a model
under the embedded fairness.

4 Verification

In this section, we show that existing state-of-the-art model checking algorithms may
be extended to handle our notion of event-based fairness with little computational over-
head. We define the notion of feasibility and then present an algorithm for feasibility
checking. A specification is feasible if it allows at least one infinite trace. Given a pro-
cess and a valuation of the data variables, a feasibility checking checks whether there
exists an infinite trace which satisfies the fairness constraints. The same algorithm is
used for LTL model checking. The product of the model and the Büchi automaton gen-
erated from negation of the property is feasible if only and if the property is not true.
For simplicity, we assume the number of system states is always finite, i.e., the domains
of the variables are finite and the process specifies regular languages.

Definition 5 (State Graph). Let P0 be a process. Let V0 be the valuation of the vari-
ables. A state graph G(P0,V0) is (S , s0,E) where S is a set of system states of the form
(e,P ,V); s0 is the initial state (init ,P0,V0) where init is the event of system initial-

ization; and E is a set of edges such that ((e,P ,V), (e ′,P ′,V ′)) ∈ E ⇔ (P ,V) e′
⇒

(P ′,V ′).

Without loss of generality, the just-engaged events are stored as part of the state infor-
mation instead of transition labels, which turns a labeled transition system to a directed
graph. A run of G(P ,V) is an infinite sequence of vertices following the edges. It is
straightforward to show that for all tr such that tr ∈ inftr(P ,V) if and only if there
is a corresponding run in G(P ,V). There is a loop in G(P ,V) if and only if a vertex is
reachable from the initial state and itself.

Specifying and Verifying Event-Based Fairness Enhanced Systems 15

get.0.0 get.1.1

0

123

4

eat.0 eat.1
5 6 7

8

9
get.0.1

put.1.0put.0.1
put.0.0

get.0.1 get.1.0

put.1.1

get.1.0

Fig. 1. LTS for 2 Dining Philosophers

Definition 6 (Fair Loop). Let P0 be a process. Let V0 be a valuation of the data
variables. Let 〈(ai ,Pi ,Vi), (ai+1,Pi+1,Vi+1), · · · , (aj ,Pj ,Vj), (ai ,Pi ,Vi)〉 where
j ≥ i be a loop in G(P0,V0). Let Engaged = {ak | i ≤ k ≤ j} be the set of engaged
events during the loop. The loop is fair if and only if the following are satisfied,

–
⋂j

k=i(enabled(Pk ,Vk) ∩ Σwf) ⊆ Engaged
–

⋃j
k=i(enabled(Pk ,Vk) ∩ Σsf) ⊆ Engaged

–
⋂j

k=i(ready(Pk ,Vk) ∩ Σwl) ⊆ Engaged
–

⋃j
k=i(ready(Pk ,Vk) ∩ Σsl) ⊆ Engaged

The set
⋂j

k=i(enabled(Pk ,Vk)∩Σwf) contains the weak fair events which are always
enabled during the loop. Similarly,

⋂j
k=i(ready(Pk ,Vk) ∩ Σwf) is the set of weak

live events which are always ready during the loop. The set
⋃j

k=i(enabled(Pk ,Vk) ∩
Σsf) contains the strong fair events which are enabled once during the loop. Similarly,⋃j

k=i(ready(Pk ,Vk)∩Σsl) is the set of strong live events which are ready once during
the loop. A loop is fair if and only if,

– all always-enabled weak fair events are engaged,
– all once-enabled strong fair events are engaged,
– all always-ready weak live events are engaged,
– all once-enabled strong live events are engaged.

A loop may contain the same state more than once, e.g., states 0,1,2,3,4,0,5,6,7,8,0 in
Figure 1 forms a loop. It is straightforward to prove that a specification is feasible if
and only if the state graph contains a fair loop. Feasibility checking is thus reduced to
find a fair loop if possible. Equivalently, we can show that a specification is feasible
if and only if the graph contains a fair strongly connected component (SCC) [16]. A
strongly connected subgraph is fair if and only if the loop which visits every vertex in
the subgraph is fair.

Example 6. Figure 1 shows the labeled transition system generated from lCollege(2)
(presented in Example 5). The loop containing state 0,1,2,3,4 is not fair because event
get .1.0, which is annotated weak live, is always ready during the loop (though not al-
ways enabled, Definition 3). Similarly, the loop containing states 0,5,6,7,8 is not fair
neither because get .0.1 is always ready. Note that the deadlock state 9 is considered as
a trivial loop. It is not fair because both put .0.1 and put .1.0, which are annotated weak
live, are ready (and therefore trivially always ready during the loop). The loop contain-
ing 0,1,2,3,4,5,6,7,8 (which constitute an SCC) is fair. Note that this loop satisfies the
property ��eat .0. �

16 J. Sun et al.

1. preorder , lowlink , found := ∅; stack ; done := 1; i := 0;
2. working := 〈(Init ,P0, V0,S0)〉;
3. while working �= 〈〉
4. v = (a,P ,V , S) := working .peek();
5. if preorder(v) = null then preorder [v] := i++;
6. foreach v ′ ∈ ample(P ,V ,S)
7. if preorder(v ′) = null then working .push(v ′); done := 0; break;
8. else early-fair-loop-detection
9. if done = 1
10. lowlink [v] := preorder [v];
11. foreach w ∈ ample(P ,V ,S)
12. if w �∈ found
13. if preorder [w] > preorder [v]
14. lowlink [v] := min(lowlink [v], lowlink [w]);
15. else lowlink [v] := min(lowlink [v],preorder [w]);
16. working .pop();
17. if lowlink [v] = preorder [v]
18. found .add(v); scc := {v};
19. while stack �= 〈〉 ∧ preorder [stack .peek()] > preorder [v]
20. k := stack .pop(); found .add(k); scc.add(k);
21. if scc is Büchi-fair
22. if scc is fair and nontrivial then return false;
23. if not OntheflyMC2(scc \ bad(scc)) then return false;
24. else stack .push(v);
25. return true;

Fig. 2. On-the-fly Model Checking Algorithm: OnTheFlyMC1

4.1 On-the-Fly Verification

In literature, there are two sets of algorithms for identifying a loop or equivalently
checking the emptiness of Büchi automata, namely, ones based on nested depth-first-
search and ones based on SCC (refer to the survey in [26]). We present here an SCC-
based algorithm which extends the one presented in [12].

The problem of LTL model checking with event-based fairness is to verify whether
every fair trace of the model satisfies a given LTL formula φ. Or equivalently, let B¬ φ

be a Büchi automaton which is equivalent to the negation of φ, the model violates φ if
and only if there is a fair SCC in the synchronized product of G(P ,V) and B¬ φ which
contains at least one accepting state from the Büchi automaton. In [16], a backward
searching algorithm is used to identify all fair maximum SCCs if there is any. Because
the query language of PAT is based on LTL (extended with events), we developed an
on-the-fly approach based on Tarjan’s algorithm for finding one maximum SCC. The
idea is to search for maximum SCCs while building the state graph. If the found one is
not fair, a set of ‘bad’ states are pruned and then the SCC is decomposed into smaller
SCCs. Whenever a fair SCC is found, we proceed to produce a counterexample.

Figure 2 shows the detailed algorithm. The inputs are a process P0, a valuation of
the data variables V0 and an initial state of the Büchi automaton S0. Note that S0 is

Specifying and Verifying Event-Based Fairness Enhanced Systems 17

skipped for feasibility checking. The main loop from line 3 to 25 is based on an itera-
tive improved version of Tarjan’s algorithm (refer to [20, 12] for details). Stack working
holds all states that are yet to explored and stack holds states which may be part of an
SCC. At line 6 (and 11), a subset of the enabled actions (i.e., ample(P ,V ,S) which
will be explained in detail in Section 4.2) is expanded. In order to conclude as soon as
possible, a simple procedure is added at line 8 to check whether the found loop is fair.
Experiences show that although this procedure becomes overhead for true properties, it
may produce a counterexample early if there is any. This is particularly true for models
which are strongly connected. A maximum SCC is discovered once the condition at
line 17 is satisfied. Line 18 to 20 collect states of the SCC from stack. If the found SCC
contains a Büchi accepting state (as a component of one state in scc), i.e., satisfying
the condition at line 21, and if scc is fair and nontrivial (i.e., with at least one transi-
tion), the algorithm returns false after producing a counterexample (refer to algorithms
presented in [16] on how to produce counterexamples). If the SCC is not fair, a set of
bad states is removed from scc (line 23). A bad state carries a fairness constraint which
can not be fulfilled by any loop formed by states in the SCC. A node (e,P ,V) in scc
is bad , i.e., (e,P ,V) ∈ bad(scc), if and only if one of the following conditions is
satisfied,

– there exists x ∈ Σwf such that x ∈ enabled(P ,V) and there does not exist a state
(e ′,P ′,V ′) in scc such that e ′ = x or x �∈ enabled(P ′,V ′). That is, x is always
enabled but never engaged.

– there exists x ∈ Σsf such that x ∈ enabled(P ,V) and there does not exist a state
(x ,P ′,V ′) in scc. That is, x is enabled but never engaged.

– there exists x ∈ Σwl such that x ∈ ready(P ,V) and there does not exist a state
(e ′,P ′,V ′) in scc such that e ′ = x or x �∈ ready(P ′,V ′). That is, x is always
ready but never engaged.

– there exists x ∈ Σsl such that x ∈ ready(P ,V) and there does not exist a state
(x ,P ′,V ′) in scc. That is, x is ready in SCC but never engaged.

Then algorithm OnTheFlyMC2 is invoked at line 23. The logic of OnTheFlyMC2 is
the same as OnTheFlyMC1 except that it only searches for maximum SCCs within the
given states (and transitions which have been stored externally during OnTheFlyMC1).
Refer to [28] for the details of OnTheFlyMC2. Whenever OnTheFlyMC2 returns
false (i.e., a nontrivial fair SCC is found), we conclude a counterexample is found. If
OnTheFlyMC2 returns true (i.e., no fair SCC is found) or there is a weak fair/live event
which is always ready/enabled but never engaged or a Büchi fairness condition is not
fulfilled by scc, scc is abandoned and then we proceed to search for the next maximum
SCC. The soundness of Algorithm 2 is presented in Appendix.

Example 7. Applying feasibility checking to lCollege(2) (shown in Figure 1) would
return two maximum SCCs, i.e., one containing state 9 only and one containing the
rest. By definition, the one containing 9 is not fair (as discussed) and state 9 is a bad
state. Removing state 9 from the SCC results in an empty set and thus it is abandoned.
The other SCC is fair and therefore the model is feasible. �

18 J. Sun et al.

4.2 Partial Order Reduction

In the worst case, where the whole system is one SCC or the property is true, Algo-
rithm 2 constructs the complete state graph and suffers from state space explosion. We
thus apply partial order reduction to solve the problem. The idea is to only construct a
reduced graph (in contrast to the complete graph in Definition 5) which is equivalent to
the complete one with respect to the given property. This is realized by exploring only
a subset of the enabled transitions at line 6 of algorithm 2.

Partial order reduction has been explored for almost two decades now. There have
been theoretical works on partial order reduction under fairness constraints [22] in a
different setting. In our setting, not only the reduction shall respect the property but
also the fairness constraints. That is, a fair loop must be present in the reduced graph if
there is one in the complete graph. In the reduced graph, for every node, only a subset of
the enabled synchronized (outgoing) transition of the model and the Büchi automaton
is explored. In particular, given a state (a,P ,V ,S) where a is the just engaged event,
P is the current process expression, V is the current valuation and S is the current
state of the Büchi automaton, a successor node (a′,P ′,V ′,S ′) is explored, written as
(a′,P ′,V ′,S ′) ∈ ample(P ,V ,S), if and only if the following conditions are satisfied,

– (a′,P ′,V ′,S ′) is a successor in the complete graph, i.e., (P ,V) a′
⇒ (P ′,V ′) and

the transition is allowed by the Büchi automaton, i.e., (S , a′,S ′) is a transition in
B¬φ and the condition which guards the transition is true. Note that the Büchi
automata are transition-labeled for efficient reasons.

– the successors must satisfy a set of additional conditions for property-preserving
partial order reduction, which is denoted as (P ′,V ′) ∈ ample(P ,V).

The algorithm presented in Figure 3 has been implemented in PAT to produce small but
sound ample(P ,V), which extends the one proposed in [11] to handle event annotations.

If P is not an indexed parallel composition (or indexed interleaving), the node is
fully expanded. Otherwise, we identify one process which satisfies a variety of con-
ditions and expand the node with only enabled events from that process. Notice that
enabledPi (P ,V) is enabled(P ,V)∩ enabled(Pi ,V), e.g., the set of globally enabled
events which Pi participates in. current(Pi) is the set of actions that could be enabled
given Pi and a cooperative environment. For instance, a guarded event is in the set even
if the guard condition is false. Two events are dependent, written as dep(e, e ′) if they
synchronize or write/read a shared variable (with at least one writing). Note that both
current(Pi) and dep(e, e ′) are based on static information, which can be collected
during compilation. A component Pi is chosen if and only if the following conditions
are satisfied,

– enabledPi (P ,V) = current(Pi). No other events could be enabled given Pi . Re-
fer to [11] for intuitions behind this condition.

– The condition on stack(P ′,V ′) is true if and only if the state (P ′,V ′) is on the
search stack (refer to [11]). Performing any event in enabledPi (P ,V) must not
result in a state on the search stack. This is to prevent enabled actions from being
ignored forever. Note that this condition can be removed for checking
deadlock-freeness.

Specifying and Verifying Event-Based Fairness Enhanced Systems 19

1. if P is of the form P1 ‖ P2 ‖ · · · ‖ Pn

1. foreach i such that 1 ≤ i ≤ n
2. if enabledPi (P ,V) = current(Pi)
3. ample := true;
4. ampleset := ∅;

5. foreach e,P ′, V ′ s.t. e ∈ enabledPi (P ,V) and (P ,V)
e⇒ (P ′,V ′)

6. if visible(e) ∨ on stack(P ′,V ′) ∨ ∃ e ′ : ΣPj | i �= j • dep(e, e ′)

7. ample := false; break;
8. else
9. ampleset := ampleset ∪ {(e,P ′,V ′)};
10. endif
11. endfor
12. if ample then return ampleset ;
13. endif
14. endfor
15. endif
16. return {(e,P ′,V ′) | e ∈ enabled(P ,V) and (P ,V)

e⇒ (P ′,V ′)};

Fig. 3. Partial Order Reduction

– The actions in enabledPi (P ,V) must be independent from transitions of other
components, i.e., �e ′ : ΣPj | i �= j • dep(e, e ′). Refer to [11] for intuitions
behind this condition.

– Different from the one in [11], an event is visible, i.e., written as visible(e), if it
is visible to a given property or the fairness annotations. Event e is visible to a
property if and only if e constitutes the property, e.g., eat .0 is visible given prop-
erty ��eat .0, or e updates a variable which constitutes the property. Event e is
visible to the fairness annotations if and only if performing e may change the set of
annotated events which are enabled or ready.

The soundness of the partial order reduction with respect to next-free LTL and event-
based fairness is proved in Appendix. Note that the above realizes only one of the possi-
ble heuristics for partial order reduction, which we believe is cost-effective. Achieving
the maximum reduction is in general computational expensive.

Besides partial order reduction, we have also implemented optimizations based on
CSP’s algebraic laws. For instance, in order to handle systems with large number of
identical or similar processes, efficient procedures are applied to sort the processes of
a parallel or interleaving composition. The soundness is proved by the symmetry and
associativity of indexed interleaving and parallel composition.

4.3 Experiments

In this part, we evaluate the algorithm and the effectiveness of the reductions using
benchmarks systems. Table 2 presents a part of the experimental results. The experi-
ments are conducted on Windows XP with a 2.0 GHz Intel CPU and 1 GB memory.

20 J. Sun et al.

Table 2. Experiment Results

Model Property without fairness with event-based fairness
result. w/o red. with red. result. w/o red. with red.

College(7) ��eat0 No < 1 < 1 Yes 10.3 11.3

College(9) ��eat0 No < 1 < 1 Yes 469.1 504.4

College(11) ��eat0 No 4.2 < 1 Yes − −
College(13) ��eat0 No 25.6 < 1 Yes − −
College(15) ��eat0 No − < 1 Yes − −

Milner Cyclic(10) ��work0 Yes 17.8 < 1 Yes 17.7 < 1

Milner Cyclic(12) ��work0 Yes 322.9 < 1 Yes 283.3 < 1

Milner Cyclic(100) ��work0 Yes − 3.3 Yes − 3.4

Milner Cyclic(200) ��work0 Yes − 17.6 Yes − 18.1

Milner Cyclic(400) ��work0 Yes − 118.4 Yes − 119.2

ReadersWriters(100) �!error Yes − 4.3 Yes − 3.9

ReadersWriters(200) �!error Yes − 37.3 Yes − 29.1

ReadersWriters(400) �!error Yes − 251.3 Yes − 257.1

The first model is the dining philosophers. The property is ��eat .0. Without fair-
ness assumptions, this property is false. A counterexample is quickly produced in most
of the cases. Nonetheless, it may take considerably long if the trace leading to a coun-
terexample is explored very late (e.g., for College(15) without reduction). Partial order
reduction significantly reduces the time to discover a counterexample for this exam-
ple. This model is then annotated with fairness, as shown in Example 5. The last three
columns show verification results of lCollege(N). The property becomes true and there-
fore a complete search is necessary. Note that partial order reduction gains little. The
reason is that the model is highly coupled and heavy in communication. Manually hid-
ing local communicating could reduce the verification time, as shown in [24].

The second model is Milner’s cyclic scheduler. Milner’s cyclic scheduler describes
a scheduler for N concurrent processes. The processes are scheduled in cyclic fash-
ion so that the first process is reactivated after the N -th process has been activated.
The fairness assumptions state that a process must eventually finish its local task and
then activate the next process. The property to verify is that a process must eventually
be scheduled, which is true with/without the fairness assumptions. This model demon-
strates the effectiveness of the partial order reduction. Without the reduction, the size
of the search graph grows exponentially and thus verification soon becomes infeasible
(e.g., for 15 processes). With partial order reduction, we are able to verify 400 processes
reasonably fast (using less than 2 minutes). Notice that the computational overhead for
handling fairness annotations are negligible, e.g., same amount of time is taken to verify
the model with/without fairness. The third models the classic readers/writers problem.
The readers/writers model describes a protocol for coordination of N identical readers
and N identical writers accessing a shared resource. The property to verify is reacha-
bility of an erroneous situation (i.e., wrong readers/writers coordination). This mode is
then annotated with fairness assumptions to state that each reader/writer must eventu-
ally finish reading/writing. This model demonstrates the effectiveness of the reduction
for handling identical/similar processes.

Specifying and Verifying Event-Based Fairness Enhanced Systems 21

Details of the models and more experiments are available online [28]. Compared
to existing tools, PAT complements the CSP model checker FDR in serval aspects.
Namely, PAT supports verification under fairness assumptions and temporal logic based
verification. For common features like deadlock-freeness checking, PAT outperforms
FDR sometimes because we use a completely on-the-fly checking strategy (refer to the
results at our web site). Compared to SPIN, PAT is not yet as efficient for systems with
no event-based fairness and small LTL properties. PAT offers a more flexible way of
modeling fairness and verifying under fairness assumptions (than SPIN’s option for
process-level weak fairness). PAT differs from SPIN in two aspects. Firstly, because we
are dealing with an event-based formalism, we extend LTL with events so that prop-
erties concerning both states and events can be stated and verified. Secondly, because
fairness constraints have been embedded in the specification, the size of the property is
reduced and thus model checking under fairness is carried out efficiently.

5 Conclusion and Future Works

In this work, we presented an approach to systematically model a variety of fairness in
event-based compositional systems. We also developed algorithms to efficiently verify
systems under fairness assumptions. A toolset named PAT has been developed for spec-
ification and verification of event-based fairness enhanced systems. Our experiments
show clear advantage over the common practise of assuming a fair scheduler and then
proving liveness properties over safety-centric specifications.

As for future works, there are a number directions to go in terms of tool develop-
ment. We are currently adding more language features, e.g., arrays, broadcasting mes-
sages, etc. We are exploring how to extend event-based fairness and its verification to
languages like C# or Java. PAT is not yet as efficient for systems with no event-based
fairness and small LTL properties. Optimization techniques like symmetry reduction
need to be studied under fairness and incorporated. One future work of theoretical in-
terests is to study the notion of process refinement/equivalence for fairness enhanced
processes. Because of fairness constraints, trace refinement becomes a stronger notion.
Namely, a fair branching may not be removed in a refined process without introducing
new traces. In this work, we choose not to prevent inputs from being marked fair. Mark-
ing inputs from an open channel fair restricts the behaviors of the environment, which
could be largely undesirable. Nevertheless, assuming fair/live environments would help
effective model checking of open systems and synthesis (e.g., [27]). One future work is
to investigate verification/synthesis of open systems under fairness assumptions.

Acknowledgement

Jun Pang, Yuxin Deng and anonymous referees provided helpful comments on early
drafts of this paper. This work is partially supported by the research grant titled “Sen-
sor Networks Specification and Validation” (T1 251RES0716) funded by Ministry of
Education, Singapore.

22 J. Sun et al.

References

1. Alagarsamy, K.: Some Myths About Famous Mutual Exclusion Algorithms. SIGACT
News 34(3), 94–103 (2003)

2. Apt, K.R., Francez, N., Katz, S.: Appraising Fairness in Languages for Distributed Program-
ming. Distributed Computing 2, 226–241 (1988)

3. Brookes, S.D.: Traces, Pomsets, Fairness and Full Abstraction for Communicating Processes.
In: Brim, L., Jančar, P., Křetı́nský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 466–482. Springer, Heidelberg (2002)

4. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An Operational Semantics for CSP. Technical
report (1986)

5. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based Software
Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

6. Costa, G., Stirling, C.: Weak and Strong Fairness in CCS. In: Chytil, M.P., Koubek, V. (eds.)
MFCS 1984. LNCS, vol. 176, pp. 245–254. Springer, Heidelberg (1984)

7. Costa, J.F., Sernadas, A.: Progress Assumption in Concurrent Systems. Formal Aspects of
Computing 7(1), 18–36 (1995)

8. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods
in System Design 19(1), 45–80 (2001)

9. Dong, J.S., Hao, P., Sun, J., Zhang, X.: A Reasoning Method for Timed CSP Based on
Constraint Solving. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 342–359.
Springer, Heidelberg (2006)

10. Song Dong, J., Hao, P., Qin, S., Sun, J., Wang, Y.: Timed Patterns: TCOZ to Timed Automata.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 483–498.
Springer, Heidelberg (2004)

11. Grumberg, O., Clarke, E.M., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
12. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tarjan’s algo-

rithm. Theoritical Computer Science 345(1), 60–82 (2005)
13. Henzinger, M.R., Telle, J.A.: Faster Algorithms for the Nonemptiness of Streett Automata

and for Communication Protocol Pruning. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996.
LNCS, vol. 1097, pp. 16–27. Springer, Heidelberg (1996)

14. Hoare, C.A.R.: Communicating Sequential Processes. Inte. Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1985)

15. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engeering 23(5),
279–295 (1997)

16. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model Checking with Strong Fairness. Formal
Methods and System Design 28(1), 57–84 (2006)

17. Lamport, L.: Fairness and Hyperfairness. Distributed Computing 13(4), 239–245 (2000)
18. Latvala, T., Heljanko, K.: Coping with Strong Fairness. Fundamenta Informaticae 43(1–4),

175–193 (2000)
19. Liu, Y., Sun, J., Dong, J.S.: An Analyzer for Extended Compositional Process Algebras. In:

30th International Conference on Software Engineering (ICSE 2008) Companion Volume,
pp. 919–920. ACM Press, New York (2008)

20. Nuutila, E., Soisalon-Soininen, E.: On Finding the Strongly Connected Components in a
Directed Graph. Information Processing Letters 49(1), 9–14 (1994)

21. Older, S.: Strong Fairness and Full Abstraction for Communicating Processes. Information
and Computation 163(2), 471–509 (2000)

22. Peled, D.: Ten Years of Partial Order Reduction. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

Specifying and Verifying Event-Based Fairness Enhanced Systems 23

23. Puhakka, A., Valmari, A.: Liveness and Fairness in Process-Algebraic Verification. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 202–217. Springer,
Heidelberg (2001)

24. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood,

J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G.,
Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg
(1995)

25. Schneider, S.: Concurrent and Real-time Systems: the CSP Approach. John Wiley, Chichester
(2000)

26. Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)

27. Sun, J., Dong, J.S.: Design Synthesis from Interaction and State-Based Specifications. IEEE
Transactions on Software Engineering 32(6), 349–364 (2006)

28. Sun, J., Liu, Y., Dong, J.S., Wang, H.: The Process Analysis Toolset Pat. Technical report,
http://www.comp.nus.edu.sg/∼sunj/pat.pdf

Appendix: Soundness Proofs

Theorem 1. Let P be a process and V be a valuation of the variables. Let φ be a
next-free LTL formula (with events). (P ,V) � φ if and only if Algorithm 2 returns true.

Proof. By a standard proof we can show that (P ,V) � φ if and only if there does
not exist an infinite path of G(P ,V) × B¬φ which is fair with respect to G(P ,V) and
is accepting to B¬φ. Equivalently, (P ,V) �� φ if and only if there is a fair loop (since
we assume G(P ,V) is finite) in G(P ,V) × B¬φ which is also accepting. Equivalently,
(P ,V) �� φ if and only if there is a fair SCC which is also accepting to B¬φ. To prove
the above theorem, we thus need to show that if the algorithm returns false if and only if
there is such an SCC. If there exists such an SCC (say scc), there must be one maximum
SCC (say SCC) which contains scc. By the soundness of Tarjan’s algorithm, SCC must
be discovered by line 21. If scc is SCC , the algorithm returns false as we shall prove.
Otherwise, because scc contains no bad states (by Definition 6 and the definition of bad
states on page 13), all states of scc are not pruned. By induction we conclude either
a fair and accepting SCC which contains all states of scc is found or scc is found. In
both cases, the algorithm returns false. Thus, the algorithm returns false if there is a fair
SCC which is also accepting. Ergo, it returns false if (P ,V) �� φ. It is straightforward to
prove that the algorithm returns false, either at line 8 (a fair loop which is also accepting
is found) or line 22 (the maximum SCC found is fair and accepting) or line 23 (a sub-
SCC is), only if such an SCC is found. The algorithm is terminating because the number
of States is finite (by assumption) and i is monotonically increasing (i.e., the number
of visited states). The ‘recursive’ call at line 23 is terminating because the number of
states in scc is monotonically decreasing (i.e., bad(scc) is not empty by definition).
Therefore, we conclude the algorithm returns true only if (P ,V) � φ. �

Theorem 2. Let P be a process. Let V be the valuation of the global variables. Let
R(P ,V) be the reduced graph constructed by expanding each node with only events
returned by the Algorithm (shown in Figure 3). Then, for every next-free LTL formula
φ, G(P ,V), s0 � φ if and only if R(P ,V), s0 � φ.

24 J. Sun et al.

Proof. For simplicity, we only prove the case for weak live events, i.e., given the weak
live annotations, there is a fair loop in the reduced graph if and only if there is one in the
complete graph. Strong live events can be transformed to weak live events at the cost of
auxiliary variables as shown in [16]. Weak/strong fair events can be proved similarly.

For each weak live event wl(a), we introduce an auxiliary variable xa . P is modified
to be P ′ in which xa is set to 0 if it is not ready or just engaged or otherwise set to
1. φ is then modified to be φ′ which is of the form (∧a ��xa = 0) ⇒ φ for each
auxiliary variable xa . We show that (P ,V) � φ if and only if (P ′,V) � φ′. For every
loop in the given model, if it is fair with respect to the fairness constraints, then for
every auxiliary variable xa , the loop satisfies that ��xa = 0 because wl(a) can not be
always ready during the loop and never engaged by Definition 6. Thus, if the fair loop
satisfies φ, it satisfies φ′. The reverse is proved trivially. Thus, (P ,V) � φ if and only
if (P ′,V) � φ′.

Next, we apply Theorem 12 in Chapter 10 of [11] to show that G(P ′,V), s0 � φ′

if and only if R(P ′,V), s0 � φ′. By apply similar arguments, we can show that the
Algorithm satisfies the following conditions,

C0. ample(P ,V) is empty if and only if enabled(P ,V) is empty. This is trivial.
C1. Along every path in the full state graph that starts at s, a transition that is depen-

dent on a transition in ample(P ,V) cannot be executed without a transition in
ample(s) occurring first. This is proved by the same argument in Section 10.5.2
in [11].

C2. If a node is not fully expanded, then every event in ample(P ,V) is invisible.
This is guaranteed by line 6 and 7 in the algorithm presented in Figure 3, i.e., the
condition visible, so that only events which preserves the valuation of propositions
in φ and the auxiliary variables are presented in the ample set .

C3. There must be at least one node which is fully expanded along a cycle. This is
guaranteed by condition on stack(P ′,V ′) at line 6.

Thus, we conclude that G(P ′,V), s0 � φ′ if and only if R(P ′,V), s0 � φ′. By transitivity,
we conclude that the theorem holds. �

Modelling and Proof of a Tree-Structured File

System in Event-B and Rodin�

Kriangsak Damchoom1, Michael Butler1, and Jean-Raymond Abrial2

1 University of Southampton
United Kingdom

{kd06r,mjb}@ecs.soton.ac.uk
2 ETH Zurich
Switzerland

jabrial@inf.ethz.ch

Abstract. Event-B is a formalism used for specifying and reasoning
about complex discrete systems. The Rodin platform is a new tool for
specification, refinement and proof in Event-B. In this paper, we present
a verified model of a tree-structured file system which was carried out
using Event-B and the Rodin platform. The model is focused on basic
functionalities affecting the tree structure including create, copy, delete
and move. This work is aimed at constructing a clear and accurate model
with all proof obligations discharged. While constructing the model of a
file system, we begin with an abstract model of a file system and sub-
sequently refine it by adding more details through refinement steps. We
have found that careful formulation of invariants and useful theorems
that can be reused for discharging similar proof obligations make models
simpler and easier to prove.

Keywords: File system, Tree structure, Refinement, Proof, Event-B,
Rodin tool.

1 Introduction

Nowadays, there are many formal methods used in the area of software devel-
opment together with a number of advanced theories and tools. However, more
experiments in this area are still needed to be carried out in order to provide
significant evidence for convincing and encouraging other users to benefit from
those theories and tools, and make formal methods more accessible to software
industries. We see our work as a contribution to the filestore mini-challenge pro-
posed by Joshi and Holzmann [13]. As highlighted in [13], a filestore is a complex
system that presents interesting challenges for specification and verification. For
example, how do we ensure reliability in the presence of concurrent accesses or
how do we deal with accidental failures that may occur during the execution.
� This work was part of the EU research project ICT 214158 DEPLOY (Industrial

deployment of system engineering methods providing high dependability and pro-
ductivity) www.deploy-project.eu.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 25–44, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 K. Damchoom, M. Butler, and J.-R. Abrial

The file system is chosen as a case study for our experiment which is carried out
by using Event-B [3] and the Rodin platform [8, 2] for specification, refinement
and proof.

We make strong use of refinement to introduce gradually features to the formal
model. We see the contribution as twofold. Firstly our work provides evidence
of the applicability of the Event-B language, the refinement approach and of the
Rodin tool. Secondly our experiment provides guidance on effective modelling
and proof styles that may be of benefit to others working on formal development
of similar systems.

Our specification of this system is focused on a tree structure and basic func-
tionalities affecting the tree structure: create, delete, copy and move objects
that can be files or directories. In this specification, we start with an abstract
level accompanied with careful formulation of invariants, and then follow this by
refinements in which more details are added.

In the abstraction, we introduce the two main properties of a tree structure:
(i) there are no loops in a tree structure and (ii) every node in a tree is reach-
able from the root. For the no-loop property, instead of using transitive closure
which is generally used for specification of absence of loops, we employ a no-loop
property proposed in [3] to formulate a simpler invariant satisfying this prop-
erty. Employing this property, which is less complicated than transitive closure,
makes the model easier to prove. For the second property, reachability, instead
of introducing another invariant, we introduce a machine theorem – which is
derived from existing invariants – that can be proved to show that the property
is satisfied.

In the first refinement, files and directories are introduced (in the previous
abstraction, both files and directories are treated in a similar way as objects).
Therefore, in this level, some additional invariants are added to the model. For
instance, files and directories are distinct and each object’s parent must be a
directory.

In addition, other required properties, i.e., a content of file and access permis-
sions, are introduced accompanied with related events concerning these proper-
ties in the second and the third refinement, respectively. Some constraints are
covered in these two refinements, such as, each file has a content, each object
has an owner and its permissions, accessing to each object is dependent on the
permissions allowed, etc.

In total 162 proof obligations were automatically generated by the Rodin plat-
form. 78% of them are proved automatically while others are discharged by using
the interactive prover. Based on interactive proof, we introduced some proved
theorems that can be reused for discharging several similar proof obligations.
This makes interactive proof easier. Consequently, the time required was also
reduced. An archive of our development in the Rodin tool may be downloaded 1.
This can be imported by anyone with an installation of the tool which is freely
available 2.

1 http://deploy-eprints.ecs.soton.ac.uk/22/
2 www.event-b.org

Modelling and Proof of a Tree-Structured File System 27

This paper will begin with providing a short description of Event-B and the
Rodin platform. Secondly, an informal description of a tree-structured file system
and its constraints are given in Section 3. Thirdly, an Event-B specification of
the file system which is divided into four levels (an abstraction and three levels
of refinements) will be outlined in Section 4, 5, 6, 7 and 8. Fourthly, in Section 9,
proof statistics will be figured. Finally, comparison with related work and con-
clusion will be given in Section 10 and 11 respectively.

2 Event-B and the Rodin Platform

Event-B [3] is an extension of the B-method [1] for specifying and reasoning
about complex systems including concurrent and reactive systems. An Event-B
model is described in terms of contexts and machines, see Fig. 1.

MMAACCHHIINNEE

Variables

Invariants

Events

Theorems

CCOONNTTEEXXTT

Carrier Sets

Constants

Axioms

Theorems

sees

Other Contexts

Other Machines

refines extends

sees

sees

Fig. 1. Relationship between machines and contexts

Contexts [4, 5] contain the static parts of a model. Each context may consist
of carrier sets and constants as well as axioms which are used to describe the
properties of those sets and constants. Contexts may contain theorems for which
it must be proved that they follow from the preceding axioms and theorems.
Moreover, contexts can be extended by other contexts and seen by more than one
machine. Additionally, a context may be indirectly seen by machines. Namely,
a context C can be seen by a machine M indirectly if the machine M explicitly
sees another context which is an extension of the context C.

Machines [4, 5] contain the dynamic parts of an Event-B model. This part is
used to provide behavioural properties of the model. A machine is made of a
state, which is defined by means of variables, invariants, events and theorems
shown in Fig. 1. The theorems of a machine must be shown to follow from the
context and the invariants of that machine. In addition, machines can be refined
by other machines, but each machine can refine at most one machine.

28 K. Damchoom, M. Butler, and J.-R. Abrial

Variables, like constants, correspond to mathematical objects: sets, binary
relations, functions, numbers, etc. They are constrained by invariants I(v) where
v are the variables of the machine. Invariants are supposed to hold whenever
variable values change. But this must be proved through the discharge of proof
obligations [4].

A machine contains a number of atomic events which show the way that the
machine may evolve. Each event is composed of three elements: an event name,
guard(s) and action(s). The guard is the necessary condition for the event. The
actions determine the way in which the state variables are going to evolve when
performing the event [4].

An event is guarded and atomic and may be performed only when its guard
holds. This means that when the guards of several events hold at the same
time, then only one of them may be performed at that time. The event is non-
deterministically chosen to be performed. Generally, an event, named Evt, is
presented in one of three possible forms shown in Fig. 2. Where S(v) are gener-
alized substitutions of variable v, G(v) represents a guard of event Evt, and t is
a local variable [4].

Evt =̂ begin S(v) end
Evt =̂ when G(v) then S(v) end
Evt =̂ any t where G(t,v) then S(t,v) end

Fig. 2. Three posible forms of an event

The Rodin platform [8, 2] is an open and extensible tool for Event-B speci-
fication and verification. It contains a database of modelling elements used for
constructing system models such as variables, invariants and events. It is accom-
panied by various useful plug-ins such as a proof-obligation generator, provers,
model-checkers, UML transformers, etc [6].

3 An Informal Description of a Tree-Structured File
System and Constraints

A tree-structured file system can be described in terms of a collection of objects
representing files and directories and a set of operations that may be performed
on these objects. The objects are structured as a tree. The tree has only one
root directory that cannot be deleted, copied or moved. Each object except the
root has only one parent which is a directory. Four operations affecting the tree
structure are discussed below.

Create. Create an object in an existing directory. The object can be either a
file or a directory.

Copy. Copy an existing object from one place to another place. The destination
must exist and must not be a descendant of the object being copied or the

Modelling and Proof of a Tree-Structured File System 29

object itself. If the object being copied is a directory, all objects belong to that
directory must also be copied to the new location and the copy must have the
same structure as the original.

Move. Move an existing object in the tree structure from one place to another
place. The destination must exist and must not be a descendant of the object
being moved or the object itself.

Delete. Delete an existing object in the file system. In case of deleting a direc-
tory, all its descendants must also be removed.

4 Abstract Model

In this abstraction, we begin with an abstract model of a tree-structured file
system focusing on tree properties and operations affecting the tree structure.
However, files and directories are not distinguished in this level. Instead they are
postponed to next refinement given in Section 6. Thus, in this level, both of them
are treated in the same way as objects which are nodes of the tree structure.
Below is a list of requirements in this level.

Req1.1: The tree has a root node.
Req1.2: All objects except the root node must have a parent.
Req1.3: There are no loops in the tree.
Req1.4: Every node in the tree is reachable from the root node.

Machine variables, invariants formulated to satisfy those required properties
mentioned above, and initialised values of each variable are given in Fig. 3. These
variables, invariants and initialisation are discussed below.

Variables objects, parent
Invariants

inv1.1 : objects ⊆ OBJECT
inv1.2 : root ∈ objects
inv1.3 : parent ∈ objects \ {root}→ objects
inv1.4 : ∀s·(s ⊆ parent−1[s] ⇒ s = ∅)

Initialisation
objects := {root}
parent := ∅

Fig. 3. Machine variables, invariants and initialisation of an abstract model

In a context seen by this abstract machine, OBJECT is defined as a carrier
set and root is an OBJECT constant (see Fig. 5). Considering Fig. 3, there
are two state variables introduced in the machine: (i) objects, a set of existing

30 K. Damchoom, M. Butler, and J.-R. Abrial

objects in the file system (inv1.1); and (ii) parent, a total function mapped from
all objects except root to their parent which is an object. In this abstraction,
objects and parent are initialised to a set consisting of root and the empty set
respectively. Invariant inv1.3 states that all objects except root must have a
parent. This invariant satisfies Req1.2. Invariant inv1.4 is introduced to ensure
that there are no loops in the tree structure (satisfying Req1.3). This invariant is
formulated by using the no-loop property proposed by Abrial in [3]. The reason
we choose this formulation, instead of transitive closure which is generally used
to specify tree properties – such as a specification of visual file system in [12] –
is to make the model simpler and easier to prove.

Considering inv1.4, parent−1[s] gives the direct descendants of all elements
of set s. For s ⊆ objects, s ⊆ parent−1[s] means that s contains a loop in the
parent relationship. Hence, this invariant states that the only such set that can
exist is the empty set and thus the parent structure cannot have loops. If we
were to use transitive closure, we would need to add the property inv1.4b given
in Fig. 4 to the machine invariants.

inv1.4b : tcl(parent) ∩ id(OBJECT) = ∅

Fig. 4. No-loop property

Here tcl which is mentioned in Invariant inv1.4b is a transitive closure. In
a context shown in Fig. 5, tcl is defined as a total function mapped from
OBJECT ↔ OBJECT to OBJECT ↔ OBJECT . Giving r ∈ OBJECT ↔
OBJECT , the transitive closure of r is equal to r ∪ r; tcl(r) (thm1 of Fig. 5).

The parent variable is updated by several of the events. If we were to use
inv1.4b instead of inv1.4, the Copy event, for example, would give rise to a
proof obligation with inv1.4b as a hypothesis and the following goal:

tcl(parent ∪ replica ∪ {nobj �→ to}) ∩ id(OBJECT) = ∅

Proof of this PO would not be easy since distribution of tcl through union and
other set operations is not straightforward. We avoid such difficulty proofs by
using formulation inv1.4 instead. Significantly, we can prove that the formulation
in inv1.4b follows from the formulation in inv1.4. This is given by Theorem thm3
shown in Fig. 5. This theorem has been proved using the interactive prover
of Rodin. The strategy we follow in proving this theorem is to use proof by
contradiction.

In order to satisfy requirement Req1.4, instead of introducing another invari-
ant, we present other machine theorems (given in Fig. 6) which are derived from
existing invariants and guarantee that the property is satisfied. Considering The-
orem mth3, since (tcl(parent))−1[{root}] returns all objects reachable from root,
this theorem shows that all objects except root are reachable from root. Other
machine theorems, mth1 and mth2, are used in the proof of mth3. Theorem
mth4 is introduced to satisfy the no-loop property.

Modelling and Proof of a Tree-Structured File System 31

Sets
OBJECT

Constants
root, tcl, objrel, objfn

Axioms
axm1 : root ∈ OBJECT
axm2 : objrel = OBJECT ↔ OBJECT
axm3 : objfn = OBJECT \ {root} �→ OBJECT
axm4 : tcl ∈ objrel → objrel
axm5 : ∀r·(r ∈ objrel ⇒ r ⊆ tcl(r))
axm6 : ∀r·(r ∈ objrel ⇒ r; tcl(r) ⊆ tcl(r))
axm7 : ∀r, t·(r ∈ objrel ∧ r ⊆ t ∧ r; t ⊆ t ⇒ tcl(r) ⊆ t)

Theorems
thm1 : ∀r·(r ∈ objrel ⇒ tcl(r) = r ∪ (r; tcl(r)))
thm2 : tcl(∅) = ∅
thm3 : ∀t·(t ∈ objfn ∧ (∀s·s ⊆ (t−1)[s] ⇒ s = ∅)

⇒ tcl(t) ∩ id(OBJECT) = ∅)

Fig. 5. Definition of transitive closure (tcl) and no-loop theorem (thm3)

Theorems
mth1 : ∀T ·(root ∈ T ∧ parent−1[T] ⊆ T ⇒ objects ⊆ T)
mth2 : objects ⊆ {root} ∪ (tcl(parent))−1[{root}]
mth3 : objects \ {root} ⊆ (tcl(parent))−1[{root}]
mth4 : tcl(parent) ∩ id(OBJECT) = ∅

Fig. 6. Machine theorems satisfying reachability and no-loop properties

5 Events

In this section, we outline four abstract events including Create, Move, Copy
and Delete.

Create event. Create an object in an existing location (see Fig. 7). In the
figure, obj is an object being created and in is its parent. Here obj must be an
OBJECT that is not already in the set objects (see grd1); and in must exist
(see grd2). The object obj will be added to the set objects by act1; and in will
be assigned to be the obj’s parent by act2.

Move event. This event is aimed at moving an existing object except root
from one place to another place. Considering Fig. 8, a is an object being moved
from node r to node c. Node c will become a new parent of a. In Fig. 9, an

32 K. Damchoom, M. Butler, and J.-R. Abrial

Event Create =̂
Any

obj, in
Where

grd1 : obj ∈ OBJECT \ objects
grd2 : in ∈ objects

Then
act1 : objects := objects ∪ {obj}
act2 : parent(obj) := in

End

Fig. 7. A specification of Event Create

existing object named obj is moved to a new location named to. Parameter des
is the set of all descendants of obj which is equal to (tcl(parent))−1[{obj}]. In
this case, the destination, to, must exist and not be obj or a descendant of obj
(these constraints are specified as grd2 and grd5). These guards are necessary
to guarantee that the move does not introduce a loop or unreachable objects.
The parent function is updated so that obj has to as its parent.

r

a

b c

d e

f

r

a b c

d e f

obj to

Fig. 8. Diagram of moving a subtree rooted at a from r to c

Copy event. In order to understand more about the copy event, we will describe
this event by using Fig. 10. From the figure, the left-hand side is a tree before copy-
ing and the right-hand side is the result. Here r is a root node, a is an object being
copied (d and e, its descendants, will be copied as well) from node r to node c. The
arrows represent the function parent and the dashed lines represent a correspon-
dence function which is a bijection from the set of all objects being copied to the
set of new objects (a′, d′, and e′) which is a copy of that set. The correspondence
bijection is used to maintain the structure of directory a in the copy.

Modelling and Proof of a Tree-Structured File System 33

Event Move =̂
Any

obj, to, des
Where

grd1 : obj ∈ objects \ {root}
grd2 : to ∈ objects
grd3 : des ⊆ objects
grd4 : des = (tcl(parent))−1[{obj}]
grd5 : to /∈ des ∪ {obj}

Then
act1 : parent(obj) := to

End

Fig. 9. A specification of Event Move

r

a b c

d e f a

d e

r

a b c

d e f

obj to

subparent

replica

Fig. 10. A diagram of copying a subtree (subparent) rooted at a from r to c

Considering Event Copy given in Fig. 11, obj (the object being copied) and
to (the destination) behave like external parameters provided by users or ap-
plication programs, while the rest are local parameters used for computation.
However, there is no distinction between external parameters and local para-
meters in Event-B. In this event, des is the set of all descendants of the object
obj which is equal to (tcl(parent))−1[{obj}]; objs is the set of all objects being
copied; nobjs is the set of new objects corresponding to the set objs; corres is
the correspondence bijection. With reference to Fig. 10, subparent represents
the subtree rooted at a which is being copied. In this event, subparent is equal
to des � parent which is a restriction of the parent function to des (e.g., d �→ a
and e �→ a in Fig. 10). Finally, replica is a copy of subparent which is equal to
corres−1; subparent; corres (e.g., d′ �→ a′ and e′ �→ a′ in Fig. 10).

34 K. Damchoom, M. Butler, and J.-R. Abrial

Event Copy =̂
Any

obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ objects
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ objects
grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent; corres

Then
act1 : parent := parent ∪ replica ∪ {nobj �→ to}
act2 : objects := objects ∪ nobjs

End

Fig. 11. A specification of Event Copy

Event Delete =̂
Any

obj, des, objs
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}

Then
act1 : objects := objects \ objs
act2 : parent := objs �− parent

End

Fig. 12. A specification of Event Delete

At this point, the reason we introduce a number of additional local parameters
is to make models easier to read and prove. For example, without introducing
des, subparent and replica, act1 can be replaced by

Modelling and Proof of a Tree-Structured File System 35

parent := parent ∪ corres−1; (tcl(parent))−1[{obj}] � parent; corres
∪ {nobj �→ to}

but we can see that the action becomes more difficult to read.
Additionally, there are two main constraints in this event. Firstly, the object

being copied, obj, must exist and must not be the root. This is satisfied by
grd1. Secondly, the destination, to, must exist and must not be the object being
copied or its descendant (satisfied by grd5). Guard grd5 plays an important role
to ensure that loops are not produced by this event.

Delete event. This event is given in Fig. 12. In the figure, obj is an object being
deleted; des is a set of all obj’s descendants. Here grd1 states that obj must be
an existing object except root. The object being deleted and all its descendants,
objs, will be removed from objects by act1 and all related parent-entries also be
removed by act2.

6 First Refinement: Files and Directories

In this refinement, objects are classified as files or directories. There are two
machine variables introduced in this level, namely, files (a set of existing files)
which is initialised to the empty set and directories (a set of existing directories)
which is initialised to a set of root. The variables files and directories are used to
partition the variable objects. Additionally, the Create event of the abstraction
is refined into events crtfile (create file) and mkdir (make directory). Additional
requirements for this level are given below.

Req2.1: Set of objects is partitioned into files and directories.
Req2.2: Root node is a directory.
Req2.3: The parent of each object must be a directory.

Variables
files, directories, parent

Invariants
inv2.1 : files ⊆ objects
inv2.2 : directories ⊆ objects
inv2.3 : files ∩ directories = ∅
inv2.4 : objects = files ∪ directories
inv2.5 : root ∈ directories
inv2.6 : ran(parent) ⊆ directories

Initialisation
files := ∅
directories := {root}
parent := ∅

Fig. 13. Machine variables, invariants and initialisation of the first refinement

36 K. Damchoom, M. Butler, and J.-R. Abrial

Fig. 13 shows a list of machine variables, invariants formulated to satisfy
above requirements and initialised values of each variable. Considering the gluing
invariant inv2.4, the abstract variable objects is entirely defined in terms of files
and directories. As a result, it can be substituted by files ∪ directories and is
no longer used in this level.

In this refinement, we choose two events (Create-file and Copy) to illustrate
a concrete model of this level.

Create-file event. This event (named crtfile), given in Fig. 14, refines Create
of the previous abstraction. Additional details introduced in this refinement: (i)
grd2, in must be a directory; and (ii) act1, the object must be added to the set
files directly, instead of the set objects in the previous abstraction.

Event crtfile refines Create =̂
Any

obj, in
Where

grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : in ∈ directories

Then
act1 : files := files ∪ {obj}
act2 : parent(obj) := in

End

Fig. 14. A specification of Create-file event

A refinement of Event Copy. In this refinement, see Fig. 15, additional details
introduced in this event are: (i) grd4, the destination, to, must be a directory;
(ii) act2, all correspondents of objs which are files must be added to the set
files; and (iii) act3, all correspondents of objs which are directories must be
added to the set directories as well. These two actions refine Action act2 of the
previous abstraction.

7 Second Refinement: File Content

In this refinement, file contents and other requirements related to the contents
are introduced accompanied with four events: open (open an existing file), read
(read the whole content of a file from the storage into memory buffer), write
(write the content of a file on the buffer back to the storage) and close (close
an opened file). Some constraints are covered in this level – such as each file has
some content; each file must be opened before reading or writing; and a buffer
of each opened file will be assigned once the file is opened and released when
the file is closed. Machine variables introduced in this refinement are listed and
discussed below.

Modelling and Proof of a Tree-Structured File System 37

Event Copy refines Copy =̂
Any

obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where

grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ directories
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ (files ∪ directories)
grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent; corres

Then
act1 : parent := parent ∪ replica ∪ {nobj �→ to}
act2 : files := files ∪ corres[objs ∩ files]
act3 : directories := directories ∪ corres[objs ∩ directories]

End

Fig. 15. A refinement of Event Copy

fcontent ∈ files→ CONTENT

opened files ⊆ files

fbuffer ∈ opened files→ CONTENT

In this refinement, the content of files, fcontent, is defined as a total function
mapped from each file to a content. Variable opened files is set of files which are
opened. The buffer of each opened file, fbuffer, is specified as a total function
mapped from each opened file to a content. The content is an array of data items
(BYTEs). In a context seen by this refined machine, the content is defined as a
constant named CONTENT ; and BY TE is defined as a carrier set.

CONTENT = N �→ BY TE

Fig. 16 given below is an example of event read. This event is aimed at reading
the whole content of a file named f from a storage into its buffer. Guard grd1
states that the file f must be an opened file.

8 Third Refinement: Permissions

In this level, requirements related to access permissions are introduced. For ex-
ample, each object has an owner, a group-owner and a list of permissions. Access

38 K. Damchoom, M. Butler, and J.-R. Abrial

Event read =̂
Any

f
Where

grd1 : f ∈ opened files
Then

act1 : fbuffer(f) := fcontent(f)
End

Fig. 16. A specification of Event read

to each object depends on its permissions. Additionally, users and groups are
specified in this level as well. For instance, each user can be a member of one or
more groups but at most one primary group is assigned, etc.

Considering Fig. 17, a number of machine variables are introduced in this
refinement: users, a set of existing users; groups, a set of existing groups;
user pgrp, a primary group of each user; user grps, user’s groups; obj owner,
an owner of each object; and obj perms, permissions of each object. Invariant
inv4.5 states that a primary group of each user must be a group in which the
user be a member. In a context seen by this machine, GROUP, USER and PER-
MISSION (a set of permission types) are defined as carrier sets.

Variables
...
users, groups, user pgrp, user grps, obj owner, obj grp, obj perms

Invariants
inv4.1 : users ⊆ USER
inv4.2 : groups ⊆ GROUP
inv4.3 : user pgrp ∈ users → groups
inv4.4 : user grps ∈ users ↔ groups
inv4.5 : ∀u·u ∈ users ⇒ user pgrp(u) ∈ user grps[{u}]
inv4.6 : obj owner ∈ (files ∪ directories) → users
inv4.7 : obj grp ∈ (files ∪ directories) → groups
inv4.8 : obj perms ∈ (files ∪ directories) ↔ PERMISSION

Fig. 17. Additional machine variables and invariants of the third refinement

Fig. 18 is an example of Event read, which refines the read event of the
previous abstraction. In this event, guards grd2 and grd3 state that user usr
who issues this read request must exist and has a read permission on f .

Modelling and Proof of a Tree-Structured File System 39

Event read refines read =̂
Any

f, usr
Where

grd1 : f ∈ opened files
grd2 : usr ∈ users
grd3 : f �→ usr ∈

RPerm(obj perms �→ obj owner �→ obj grp �→ user grps)
Then

act1 : fbuffer(f) := fcontent(f)
End

Fig. 18. A refinement of Event read

RPerm, which is mentioned in the event read, encodes the rules that deter-
mine whether a user has read permission for a file. It is defined in a context seen
by this machine. Part of this context which is related to RPerm is shown in
Fig. 19. In the figure, p represents a permission relation; s is an owner function;
g is an object-group function; m is a user-group relation; su, a super user (who
has the right to manage every thing), is defined as a USER constant; and rbo
(owner-read), rbg (group-read) and rbw (world-read) are permission types. This
function states that a user u has a permission to read an object o only if at least
one of these criteria is satisfied: (i) the user is the owner and has the owner-read
permission; (ii) the user is a member of the group to which the object belongs
and has the group-read permission; (iii) the world-read permission is assigned
to the object; and (iv) the user is the super user. Other permission definitions
(i.e., write and execute permission functions) which are not mentioned here are
also specified in the same way.

o �→ u ∈ RPerm(p �→ s �→ g �→ m)
⇔ ((o �→ u ∈ s ∧ o �→ rbo ∈ p)

∨
(g(o) ∈ m[{u}] ∧ o �→ rbg ∈ p)
∨
(o �→ rbw ∈ p)
∨
(u = su))

Fig. 19. A definition of read permission function

40 K. Damchoom, M. Butler, and J.-R. Abrial

9 Proofs

The proof statistics, given in Fig. 20, show that 162 proof obligations were gen-
erated by the Rodin platform. 127 proof obligations (or 78%) were proved auto-
matically while others were discharged by interactive proof. In the figure, MCH0
represents an abstract model; MCH1, MCH2 and MCH3 represent the first, sec-
ond and third refinements of the abstract model. CTX0 up to CTX3 represent
corresponding contexts which are seen by those machines.

Machines/Contexts Total POs Automatic Interactive
CTX0 10 8 2
CTX1 7 3 4
CTX2 0 0 0
CTX3 3 3 0
MCH0 35 22 13
MCH1 50 42 8
MCH2 17 15 2
MCH3 40 34 6
Overall 162 127 (78%) 35 (22%)

Fig. 20. Proof statistics

In order to make proof easier and reduce the time required, we introduced
proved theorems that could be reused for discharging some similar proof obliga-
tions. The example given in Fig. 21 is a theorem introduced in a context seen by
the abstract machine. This theorem was used to prove that the no-loop property
held for Event Copy. To prove this event preserves the no-loop property (inv1.4),
we provided: f = parent, g = replica, r = root, u = nobj, x = to, M = objects
and N = nobjs. However, the theorem could be reused for Event Create and
Move events as well. For example, in the case of Event Create, g was assigned
to be the empty set, u = obj and N = {obj}.

Proof of Theorem thm4 was one of the most complex of the interactive proofs.
We outline the steps involved. Proving thm4, we have the goal G1:

C = ∅ (G1)

with the hypothesis H1:

C ⊆ (f ∪ g ∪ {u �→ x})−1[C] (H1)

H1 is rewritten to H2:

C ⊆ f−1[C] ∪ g−1[C] ∪ {x �→ u}[C] (H2)

Now we cannot prove that C ⊆ f−1[C], but we can use H2 and other antecedents
of thm4 to prove

C ∩ M ⊆ f−1[C ∩ M] (H3)

Modelling and Proof of a Tree-Structured File System 41

thm4 : ∀f, g, r, u, x, M, N ·
M ⊆ OBJECT ∧ N ⊆ OBJECT ∧ M ∩ N = ∅
∧ r ∈ M ∧ f ∈ M \ {r} → M
∧ u ∈ N ∧ g ∈ N \ {u}→ N
∧ x ∈ M
∧ (∀A·A ⊆ f−1[A] ⇒ A = ∅)
∧ (∀B ·B ⊆ g−1[B] ⇒ B = ∅)
∧ f ∪ g ∪ {u �→ x} ∈ (M ∪ N) \ {r}→ M ∪ N

⇒
(∀C ·C ⊆ (f ∪ g ∪ {u �→ x})−1[C] ⇒ C = ∅)

Fig. 21. A theorem used for discharging no-loop proof obligation

From H3 and the antecedent of thm4 we can prove

C ∩ M = ∅ (H4)

Similarly, we can prove that

C ∩ N = ∅ (H5)

We observe that C can be partitioned by M and N. Thus, using H2 we can prove

C = (C ∩ M) ∪ (C ∩ N) (H6)

Finally, G1 is proved using H4, H5, and H6.

10 Comparison with Related Work

A number of formalisations of file systems have been developed by other re-
searchers. Most of them are focused on file contents, and read and write op-
erations. There is some work that deals with the structure of file systems. A
specification of a visual file system in Z by Hughes [12] is focused on a tree
structure and operations affecting the tree structure, but file content and a ma-
nipulation of file content were not specified. In this specification, transitive clo-
sure was chosen to specify main property of a tree structure, e.g. reachability.
However, the no-loop property was not mentioned in this specification. In ad-
dition, this specification had no refinement and no proof. Another related work
by Morgan and Sufrin presented in [11] is a specification of a Unix filing system
in Z. In this specification, instead of using a tree structure, the location of each
object is formulated as a sequence of directory names, which is the path of each
file. This work is concentrated on file contents and naming operations used for
manipulating these rather than structure manipulation operations such as direc-
tory copy and move. Based on the specification of Morgan and Sufrin, Freitas,

42 K. Damchoom, M. Butler, and J.-R. Abrial

Fu and Woodcook [10] have developed a verified model of the POSIX filestore
accompanied with a representation and proof using the Z/Eves proof system.

Since the filestore challenge was proposed by Joshi and Holzmann [13] in
2005, other researchers have addressed this challenge. For example, Butterfield
and Woodcook [7] have developed an abstract specification in Z of the ONFi
specification [16]. In addition, Ferreira et al. [9] have developed and verified
a specification of the Intel Flash File System Core [17] in VDM. Alloy and
HOL were used as tools for model checking and theorem proving. Another work
contributed by Kung and Jackson [14] is a formal specification and analysis of
a flash-based file system in Alloy. This work focused on basic operations of a
filesystem and features covering wear-levelling and fault tolerance.

11 Lessons and Conclusion

In this paper, we have presented a verified model of a tree-structured file sys-
tem focusing on the tree structure and the basic operations affecting the tree
structure. Our aims are constructing a model with clear and accurate formula-
tion of the system properties and discharge of all proof obligations. To satisfy
these, careful selection of invariants and machine theorems was important and
eased the proof effort. For example, for the high-level requirements on the data
structure, we introduced two tree properties: (i) no-loop and (ii) reachability.
Both these properties are naturally expressed using transitive closure. However,
we identified simpler but sufficient formulations (inv1.3, inv1.4) and exposed
these as invariants. Proving that all events preserved these invariants was not
too difficult since they did not involve transitive closure. The transitive closure
formulations were expressed as machine theorems and we proved that these fol-
lowed from the machine invariants. We did not need to prove that the theorems
are preserved by all machine events which simplified the proof effort considerably.

Our experience of using the Rodin tool was very positive1. The supported
language was sufficiently expressive and all proof obligations could be discharged.
We achieved a good degree of automatic proof. All interactive proofs involved a
small number of steps and were straightforward to achieve.

Based on this experience, we have found that general theorems should be
specified in a context such as Theorem thm4 in Fig. 21. They can be seen and
used by more than one machine, and can be extended by other contexts. Spe-
cific theorems which are derived from machine variables and invariants should be
specified in machines (such as machine theorems given in Fig. 6). These machine
theorems can be used to help discharge proof obligations as well. Introducing
additional theorems that can be reused for discharging similar proof obligations
makes automatic and interactive proof easier and can reduce the time required
for proofs. In addition, instead of introducing new machine invariants to satisfy
system properties, providing machine theorems and proving that those properties

1 Caveat: Abrial and Butler are developers of the Rodin tool so are not objective
evaluators.

Modelling and Proof of a Tree-Structured File System 43

are satisfied is another mechanism used to specify system models. This mecha-
nism can reduce the number of proof obligations and makes models simpler and
easier to prove.

Additionally, it can be seen in an example given in Section 5, providing ad-
ditional parameters in each event is useful sometimes. Although more guards
are needed, it could make models more readable and easier to manage in both
specifying and proof.

Refinement can be used to introduce other requirements that may be post-
poned or missed from the previous steps and later be covered in the refinement
steps. Refinement allows us to factor out some of the modelling and proof com-
plexities. In this development we chose to focus on the tree structure manip-
ulation in the abstract model and postpone other details to later refinements
- for example, we do not distinguish files and directories at the abstract level.
This made the proof obligations and invariants for the tree structure easier to
formulate than if we had tried to model everything in one level. Note that we
regards the full chain of refinements as constituting the specification, not just
the most abstract level.

Finally, it can be stated that this example allowed us to define a kind of
modelling methodology – finding the right mathematical concepts, finding useful
general theorems – which could be exported in many different complex modelling
projects which require a manipulation of the tree structure.

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: A system development process with Event-B and the Rodin platform.

In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 1–3. Springer, Heidelberg (2007)

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2008)

4. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool en-
vironment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260.
Springer, Heidelberg (2006)

5. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of dis-
crete models: Application to Event-B. Fundamentae Infomatica, 1001–1026 (2006)

6. Butler, M.: Rodin deliverable D31: Plublic versions of plug-in tools. Technical
report, University of Southampton, UK (2007)

7. Butterfield, A., Woodcock, J.: Formalising flash memory: First steps. In: 12th
ICECCS 2007, pp. 251–260. IEEE Computer Society Press, USA (2007)

8. Coleman, J., Jones, C., Oliver, I., Romanovsky, A., Troubitsyna, E.: RODIN (Rig-
orous open Development Environment for Complex Systems). In: 5th European
Dependable Computing Conference: EDCC-5 supplementary, Budapest, pp. 23–26
(2005)

9. Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying Intel flash file system core
specification. Technical report, University of Minho (2008)

10. Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the
verified software repository. In: 12th ICECCS, pp. 3-14 (2007)

44 K. Damchoom, M. Butler, and J.-R. Abrial

11. Hayes, I.: Specification Case Studies. Prentice Hall International, UK (1992)
12. Hughes, J.: Specifying a visual file system in Z. Technical report, Department of

Computing Science, University of Glasgow (1989)
13. Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable filesystem. In: Ver-

ified Software: Theories, Tools, Experiments (2005)
14. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.

1st Conference on ASM, B, and Z (ABZ 2008). London, UK (to appear) (September
2008)

15. Métayer, C., Abrial, J.-R., Voisin, L.: Rodin deliverable 3.2. Event-B language.
Technical report, University of Newcastle upon Tyne, UK (2005)

16. Cemicondutor, H., et al.: Open NAND Flash Interface Specification. Technical
report Revision 1.0, ONFI (December 2006), http://www.onfi.org

17. Intel Flash File System Core Reference Guide, version 1. Technical report
304436001, Intel Coorporation (October 2004)

Conformance Testing Based on UML State Machines
Automated Test Case Generation, Execution and Evaluation

Dirk Seifert

LORIA — Université Nancy 2, Campus scientifique, BP 239
54506 Vandœuvre lès Nancy cedex, France

Dirk.Seifert@Loria.fr

Abstract. We describe a comprehensive approach for conformance testing of
reactive systems. Based on a formal specification, namely UML state machines,
we automatically generate test cases and use them to test the input-output con-
formance of a system under test. The test cases include not only the stimuli to
trigger the system under test, they also include the test oracles to automatically
evaluate the test execution. In contrast to Harel Statecharts, state machines be-
have asynchronously, which makes automatic test case generation a particular
challenge. As a prerequisite we have completely formalized a substantial subset
of UML state machines that includes complex structured data. The TEAGER tool
suite implements our test approach and proves its applicability.

1 Introduction and Related Work

The impact of embedded systems in our everyday life is steadily growing. They are
present not only in very specific contexts, but also in nearly every electrical device we
use. In general, embedded systems comprise of hardware and software components in-
teracting with a specialized technical environment via sensors and actors. The main
reason for their success is the combination of specific or high-performance hardware
with the flexibility of software. The software is responsible for controlling the hardware
and software components and for calculating reactions as responses to received events.
Erroneous systems annoy the costumers and are a high commercial risk in mass cus-
tomization. Moreover, size and complexity of nowadays systems demand for improved
and automated processes: for development as well as for quality assurance.

In a model-based development approach, models of the system which have to be
built, guide and control the development process. There are various types of models dif-
fering in the level of abstractions or in their intended use. In the first steps, the models
are used to analyze the problem domain and to ease the information exchange among
developers. Later on, they form the basis to design and implement the system, serve
as documentation, and are also used for quality assurance purposes. For example, the
Unified Modeling Language (UML) comprises thirteen diagram types to specify the
structure and the behavior of a system or a system component [1]. The included state
machines are used to either describe the discrete reactive behavior (behavioral state ma-
chines) or to describe the usage protocol (protocol state machines). In our approach we
use the behavioral state machines to specify the states a system can take and actions

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 45–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 D. Seifert

it can execute during its lifetime in response to internal and external events. The dis-
crete reactive character of state machines and the possibility to completely specify the
behavior of a system make state machines appropriate to model reactive systems. They
also allow to automatically generate test cases that include test oracles. Testing means
executing a system under test (SUT) with selected but real data to evaluate its confor-
mance, whereat conformance is evaluated on the basis of the observations made on the
system under test. It aims in falsification, that means to show inconsistencies between
the specification and the SUT. It benefits from the fact that the actual system is brought
to execution, and thus, the interaction of the real hardware and software can be evalu-
ated. It also benefits from the fact that it is applicable at different levels of abstraction
and at different stages of the development.

The contribution of our work is twofold: first, we formalized a substantial subset of
UML state machines that includes the manipulation of complex structured data. Second,
we present a conformance test approach based on UML state machines that allows
automatic generation, execution and evaluation of test cases on the level of unit testing.
To our knowledge there is no formalization related to the latest UML standard [1] that
precisely formalizes data aspects. We focus on the reactive behavior and skip real time
aspects in this paper (in short: we allow to manually specify lower and upper timeout
limits for every event). Considering real time behavior is still a challenge for automated
processes. It is one of our prospects for future work.

Our formalization of UML state machines is influenced by several work (e.g.,
[2–4]). Most approaches focus on model checking and the chosen representation is
not always appropriate for automated test case generation. Moreover, there have been
major changes in UML 2 that require a revision of previous work. We present an op-
erational semantics that is complete with respect to the considered subset and includes
all necessary definitions. Moreover, it is the first formalization which includes all de-
finitions related to complex structured data. De Nicola and Hennessy [5] introduce a
formal theory of testing on which (later on) Brinksma [6] and Tretmans [7] build ap-
proaches to derive test cases. For basic work on testing based on transition systems and
(extended) finite state machines we refer to the surveys [8–10]. A lot proposals only
deal with deterministic systems and require that the model must be strongly connected
[11–13], or assume the testing process to communicate synchronously with the system
under test [6, 10]. More recent research allow some of these requirements to be relaxed
(see e.g. [14–16]) but most refer to older UML standards, consider different subsets,
or do not consider complex structured data. Moreover, we allow nondeterminism in
the specification as well as in the SUT, and asynchronous communication between the
SUT and its environment. A further difficulty in using transition or finite state machines
based techniques is that transitions in state machines are labeled with input-output pairs
associated to a single transition. The underlying semantic model builds on the steps of
the whole state machine. Those comprise the execution of several transitions including
changing the current configuration and executing actions such as those that generate
output events. In such a step the atomicity of input processing and output generation
is preserved. Mapping the semantics to transition systems or input/output automata to
apply classical techniques would require to introduce intermediate states and transi-
tions. On the one hand this would break the correspondence of a state machine step

Conformance Testing Based on UML State Machines 47

and a semantic step, and on the other hand such a multi-step approach unnecessarily
complicates the formalization and use of state machines.

Latella et al. [15, 17, 18] follow (as we do) a ”semantics-first” approach in which a
sound basic kernel of the notation is considered and extended, only if the main features
are investigated. In contrast to our work they do not consider complex structured data
(i.e., interpret a state machines data space or event parameters). They also refer to an
older UML standard and do not consider different transition orders, which become rel-
evant if data are regarded. Offutt et al. [19, 16] present techniques to generate test cases
from UML state diagrams on class-level testing. In contrast to our work, they have a
data-centric view and focus on change events and boolean variables. The generated test
suites are related to full-predicate coverage. Moreover, it is not clear how far the ap-
plied semantics follows the UML standard. The work around the AutoFocus tool [20]
is interesting but they use proprietary notation which does not include all aspects of
UML state machines and a formal, but synchronous, semantics. Another mentionable
industrial approach are the AGEDIS tools [21], but the used semantics is not completely
clear. Spec Explorer developed at Microsoft Research ([22] and related publications) is
an industrial approach that uses finite state machines as the underlying model for au-
tomated testing. They also test against nondeterministic systems and address problems
of data instantiation. The general principle to explore the specifications state space is
comparable to our approach. In contrast, the focus is on (synchronous) method calls.

In Sec. 2 we introduce the syntax and semantics of state machines we need in this
paper by means of an example. In Sec. 3 we present our test approach to automatically
generate test cases out of a state machine specification. We describe the underlying
theory, the test case generation algorithms, how approximation techniques are used to
increase the efficiency and how the test case generation and execution can be controlled
and evaluated. In Sec. 4 we present our TEAGER tool suite and discuss experimental
results. In Sec. 5 we conclude our work and give an outlook to ongoing research.

2 State Machines

UML state machines [1] are an object-oriented extension of the classical Harel State-
charts [23]. We use them to describe the sequence of states a system or system compo-
nent can take and the actions it executes when changing these states. State machines are
mathematical models with a graphical representation: the nodes depict simple or com-
posed states of the system and the labeled edges depict transitions between these states.
Composite states are used to hierarchically and orthogonally structure the model, thus
reducing its graphical complexity. Labels express conditions under which transitions
can be taken and the actions that will be executed when the transitions are taken. Events
are used as triggers to activate transitions and can be parameterized to exchange data.
Optional, every state machine has a data space that can be read and manipulated by
the state machine during execution. More precisely, it is possible to read data values to
describe specific conditions when a transition can be taken or to manipulate data values
and exchange information within actions. A transition comprises a source state, a trigger
event, an optional guard, an optional effect (which consists of a sequence of actions),
and a target state. A guard describes a fine-grained condition (with reference to the
system’s state) that must evaluate to true to enable the transition. Hence, the activation

48 D. Seifert

Empty
CD

Full
CD

boolean inCDFull = false; boolean inTapeFull = false; integer trackCount;

power powerAudio Player Off

On

CD Mode

CD Player

next
back

next
next

back

back

back

next

next

back

P2

P3P4

Tuner Mode

src [in("Tape Full")] / tape_plays

src [not in("CD Full")] / tuner_plays

src [in("Tape Full")] / tape_plays

src [in ("CD Full")] / cd_plays

src [in("CD Full")]
/ cd_plays

/ tuner_plays
src [not in("Tape Full")]
cd_eject

tape_eject [in("CD Full")] / cd_plays

tape_eject [not in("CD Full")] / tuner_plays

Tape Mode

Spooling
Backward Forward

Spooling

Playing
Tape

back back

next
next

cd_insert / inCDFull = true;
trackCount = cd_insert.1

cd_eject / inCDFull = false;

Empty
Tape

tape_insert / inTapeFull = true;

Tape Player

tape_eject / in TapeFull = false;

Car Audio System

CD
Playingplay

Track
Next

play

Former
Track

Full
Tape

P1

Fig. 1. State machine specification for the Car Audio System

of the source state, the trigger event and the fulfilled guard condition constitute the nec-
essary constraint to fire a transition. An action can either be a statement manipulating
the data space or the generation of new events. The action sequence and the subse-
quently active target state constitute the overall effect of the transition. In opposite to the
classical Statecharts, the event processing takes place in a so-called run-to-completion
step [1]. This asynchronous event processing demands the processing of the previous
event to be completely finished before the next event can be processed. In the follow-
ing we briefly describe state machines by means of an example. Afterwards we discuss
semantic issues which pose a challenge for automated test case generation. A complete
and detailed description as well as a precise definition of the semantics (including the
integration of complex data) can be found in [24, 25].

2.1 Example

We use a state machine model specifying the behavior of a simple sound device in a
car to demonstrate the state machine notation. The requirements for such sound device
could be as follows: It should be possible to turn the Car Audio System on and off.
When turned on, it should play one of three different audio sources, namely radio, tape
or compact disc, respecting the presence of a tape or a compact disc. It should be
possible to change between available sources. Furthermore, it should be possible to
switch between four radio stations, to spool a tape backward or forward, or to select
the previous or the next track of a compact disc.

We introduce the following events to model the required behavior: power, src
(to switch between the different sources), next, back and play. We also introduce
events signaling the insertion and the ejection of a tape or a compact disc as well

Conformance Testing Based on UML State Machines 49

as events to signal system reactions. Furthermore, we use data variables to store de-
tailed information about the current state. For example, we use an integer variable
trackCount to store the number of titles of an inserted compact disc. Figure 1 shows
a state machine model of the sound device including the related data space.

At the highest level of abstraction the model consists of an orthogonal state compris-
ing three regions. The two regions CD Player and Tape Player model the infor-
mation if a tape or a compact disc is inserted into the system or not. The more complex
region Audio Player models the control of the system. The region is refined by two
states: Off and On. Initially the system is assumed to be switched off, expressed by
the small arrow leaving a bullet and ending at the Off state. When the event power is
processed the system is switched on and starts to play the radio (again expressed by a
small arrow). The composite state On is refined into states modeling the three signal
sources. The transitions between these states describe the changes between the sources
as reaction to an event src. For example, when the system is in Tuner Mode and a
tape and a compact disc are inserted into the system (i. e. both in-predicates are true)
and the event src is processed, the system can either switch to the tape mode or switch
to the compact disc mode because both transitions are enabled and can fire. All three
substates of Audio Player are further refined to describe the particular behavior in
reaction to the events next, back and play in each state.

2.2 State Machine Semantics

The semantics of UML state machines is adapted from the STATEMATE semantics [26]
to fit into the object-oriented paradigm. As described above a state machine can be
refined by simple composite and orthogonal states. Simple composite states contain
exactly one region and orthogonal states contain at least two regions. In every region
only one substate can be active at a time. The state which is entered by default when a
region is entered is marked by an arrow emanating from a filled circle. The hierarchical
ordering of states forms a tree structure with a region as the root node, simple states at
the leave nodes and in between (alternating) composite states and regions.

Due to orthogonal regions a state machine can have several active states at a time.
We call the set of all active states configuration. For the same reason it is possible that
more than one transition can fire at a time — one in every active orthogonal region. We
call the set of all jointly firing transitions firing transition set (FTS). Due to the hier-
archical structure it can happen that two transitions are enabled for firing on different
hierarchy levels of a state. Taking both would lead to a configuration which is not well-
formed. A similar situation arises if a transition leaves an orthogonal region. In this
case the transition cannot fire together with an enabled transition in another orthogonal
region. In both cases the transitions are said to be in conflict with each other. Conflicts
are identified if two transitions leave identical states in the state hierarchy. The UML
describes a two-step process to resolve conflicts. In the first step a priority scheme is
used. A transitions emanating from a state deeper in the state hierarchy has priority over
the other transition. Thus the more refined transition is taken. This differs from classi-
cal Statecharts, but it reflects the object-oriented inheritance behavior. However, not all
conflicts can be resolved using this priority scheme. In the second step only transitions
are selected which are not in conflict to each other allowing for maximal progress of

50 D. Seifert

the system. A so-called transition selection algorithm selects all maximal sets T‖ ⊆ T
of enabled transitions fulfilling the following requirements:

∀ t : T‖ • enabled(t,c,e,d) (1)

∀ t1, t2 : T‖ | t1 �= t2 • t1 ‖ t2 (2)

� t′ : T \T‖ | enabled(t′,c,e,d) • ∀ t : T‖ • t ‖ t′ ∨ t′ ≺ t (3)

First, all transition in the set must be enabled regarding the current configuration,
the trigger event and the current data assignments. Second, all transitions in the set are
mutually conflict free (expressed by the ‖ operator). Third, there is no enabled transi-
tion outside the set which is conflict free with all transitions in the set or with higher
priority than a transition inside the set. Thus, transitions with the highest priority are
taken and maximal sets are chosen. Result is a set of firing transition sets (FTSs). It is
important to mention that for execution one FTS is arbitrarily chosen, and that the order
in which the transitions in this set are fired is arbitrarily chosen, too. In consequence,
all set choices and transition permutations form the set of all possible semantic steps
of the state machine at a time. This is important if we want to compute the possible
correct behavior for an input sequence to evaluate the test execution. In opposite to
classical Statecharts, the event processing takes place in a so-called run-to-completion
step. This asynchronous event processing demands the processing of the previous event
to be completely finished before the next event can be processed. Therefore it is nec-
essary to buffer received events in an event store. Consequently, the occurrence of an
event and its processing are asynchronous (i.e., take place at different times). It follows
that a possible (observable) reaction of the system also takes place asynchronously.

The semantic model of state machines builds on the semantic steps a state machine
can execute during its lifetime. Such a step moves the state machine from one semantic
state to another semantic state while receiving events from and emitting events to the
environment. A semantic state (called a status) comprises three components, namely a
configuration (a set of active states), an event store, and the variable assignments. We
depict the components of a status in double square brackets [[c,q,d]] and a semantic step

[[c,q,d]]
in,out−−−→ [[c′,q′,d′]]. Note that the chosen set of firing transitions and the execu-

tion order of these transitions can be identified (if necessary) from this representation.
Assuming a state machine to be input enabled (cf. the next section) a semantic step can
be described as follows:

q =<>

q′ = ⊕(q,Ein)

[[c,q,d]]
Ein,〈〉−−→ [[c,q′,d]]

(4)

q ∈ ran⊕
(q′′,e) = �(q)

c′ = (c\⋃
∀ t:T‖ exits (t))∪⋃

∀ t:T‖ enters (t)

Aseq ∈ perm({t : T‖ • effect(label(t)(e))})

(d′,Egen) = performAll(�/Aseq)(d)
(Eint = Egen �ESM) ∧ (Eout = Egen �Eenv)

q′ = (q′′ ⊕Eint)⊕Ein

[[c,q,d]]
Ein,Eout−−−−→ [[c′,q′,d′]]

(5)

Conformance Testing Based on UML State Machines 51

We have to distinguish two cases. The first case covers the situation when the event
store does not contain any event (4). During the step, only the events received from the
environment (Ein) are added to the event store (⊕(q,Ein)). The active configuration and
the data assignments are left unchanged. The second case covers the situation when the
event store contains events for processing (5). During the step, the trigger event will be
selected from the event store (�(q)). The next configuration c′ results from leaving all
states the transitions exit, and entering all states the transitions enter. Next, an execution
order for the FTS is chosen (perm), and the effect of this transition sequence is calculated
(performAll). The effect includes the new data assignments (d′) and the sequence of
newly generated events (Egen). Finally, this event sequence is processed. The generated
internal events (Eint) and the events received from the environment (Ein) are added to the
event store. The remaining external events (Eout) are sent to the environment. Now we
can describe the execution of a state machine based on this definitions as a concatenation
of semantic steps. We call such a sequence of semantic steps a computation.

[[c1,q1,d1]]
in1,out1−−−−→ [[c2,q2,d2]]

in2,out2−−−−→ . . .
inn−1,outn−1−−−−−−−→ [[cn,qn,dn]]

We use this execution model to define our test approach. Only a precise and clearly
interpretable mathematical model as we presented here offers the basis for automated
processes. Our complete state machine semantics can be found in [24, 25].

3 Test Case Generation

In the UML standard and in our semantics, too, not all semantic details are completely
determined. These open issues are called semantic variation points. They prevent un-
necessary restrictions in the semantics and allow some degrees of freedom for the im-
plementation of the semantics. The user has to instantiate them before working with the
semantics. Unfortunately, many problems with the UML semantics arise from semantic
variation points. On the one hand some of them are not obvious in the standard and on
the other hand decisions taken are often not propagated to the public. Concerning our
test approach the most interesting semantics variation points are: the nature of the event
store, events not enabling any transition, the selection policy of possible firing transition
sets, and the execution order of the transitions in a chosen set.

We instantiate the two first semantic variation points and do not instantiate the latter
two, thus the test approach works correctly for different implementations of a state
machine specification. Precisely, we neither want to restrict how to choose a possible
set of firing transitions (if there is more than one) nor do we want to restrict the order
these transitions will be executed. This is different for the event store. In order to be able
to calculate the possible correct behavior allowed by the state machine specification, we
need to know the nature of the event store, or with other words, we have to decide for
a specific nature. In most practical contexts a FIFO queue is used to store events for
further processing. Hence we assume an unbounded reliable FIFO queue as event store.
Second, we assume that events that do not enable a transition when they are processed
are deleted and the next event from the event store will be processed. This implies that
the state machines do not block. Technically they are called input enabled. In summary,

52 D. Seifert

PCO

IN

PCO

OUT

State Machine SM

Test Envirionment

Environment

seqEoutseqEin

Fig. 2. Abstract test assembly for reactive systems

an event queue is introduced into the semantic model of state machines, non-enabling
events from the queue will be omitted, and we need to respect different firing transition
set selection and execution strategies in our test approach.

3.1 Conformance Relation for State Machines

As mentioned in the introduction, an embedded system usually comprises of hardware
and software components. Hence, we treat the SUT as a black box to reflect this cir-
cumstance. We only require the SUT to have so-called points of control and observa-
tions. With these it is possible to control and observe the SUT. (i.e., to send inputs and
to observe the outputs of the SUT). Figure 2 shows this abstract test assembly. As a
consequence only the inputs to the SUT and the outputs of the SUT are visible in the
environment and thus for the tester. This particularly implies that the event queue is not
visible from the outside. To generate test cases and especially the test oracles we need
to restrict the test generation to the observable parts of a SUT, but must respect internal
details, which influence the possible behavior. Consequently, we need to extract the ob-
servable parts of the computations we defined for the semantic model of state machines.
These are the events received from the environment and the generated events sent to the
environment. Corresponding to the computation defined above we yield an observable
computation by extracting and concatenating these events:

in1
�out1 � . . .� inn−1

�outn−1 (6)

We assumed the event store to be a queue so that received events will be stored one
after another in sequence. Furthermore, we assume that transitions and actions on tran-
sitions are executed in sequence. Hence, generated events are also stored in sequence.
The set of all observable computations form our observable execution model of state
machines and the basis for the test case generation.

A prerequisite to automatically evaluate whether a SUT conforms to its specifi-
cation is a precise definition of conformance. De Nicola and Hennessy studied vari-
ous possible characterizations of conformance [5, 27]. Brinksma and Tretmans studied
various implementation relations for synchronous transition systems [6, 7]. In general,
relevant implementation relations are based on the same idea of an external observer.
Here, an implementation I conforms to its specification S, if and only if, all observations
obs any external observer o : O can make on the implementation, can be related to the
observations this observer can make on the specification:

I ≤o S ⇔∀o : O • obs(I,o)� obs(S,o) (7)

Conformance Testing Based on UML State Machines 53

To get an applicable relation you need to define the type of observers (O), which
observations these observers can make (obs), and how to relate these observations (�).
We use sequences of inputs to the SUT as observers. The observations these observers
can make are the resulting outputs (i.e., the generated events). The relation we use to
compare observations of the system under test with the observations of the specification
is set inclusion (⊆). We argue that a system under test conforms to its specification, if
and only if, the output sequences for all possible input sequences are included in the set
of all output sequences of the specification for the same input sequence (8). Following
Tretmans [7] we restrict the set of possible inputs to that of the specification (seqES).
The set of outputs we calculate from the set of observable computations of a speci-
fication (9). Precisely, the set of all observations out(S,σ) for S with input sequence
σ results from all observable computations of S (otraces(S)) for which σ denotes the
input sequence (σ = δ �ES) and δ �Eenv denotes the resulting output sequence.

I ≤out S ⇔∀σ : seqES • out(I,σ) ⊆ out(S,σ) (8)

out(S,σ) == {δ : otraces(S) | σ = δ �Ein • δ �Eout} (9)

Now we have a precise meaning of conformance and a guideline how to compute test
cases and test oracles: based on the specification we need to calculate the traces of the
state machine for all possible inputs and extract the possible correct observations. For
testing we need to stimulate the SUT with the particular inputs, observe the outputs and
compare them to the pre-calculated possible correct observations. That means to check
for their existence. Obviously a problem arrises when thinking about practical testing
— the set of inputs is usually infinitely large or at least pretty huge.

3.2 Selecting Inputs for Test Case Generation

When testing in practice we are only interested in relevant and interesting test cases to
advantage the quality assurance process, and to use time and computation power at an
optimum. Therefore, we generate test cases for pre-selected input sequence. This two-
step process clearly separates the input selection problem from the test case generation
problem. Hence it is possible to use different selection strategies with the same genera-
tion process and it allows to adapt the input selection process to different test purposes
or to different project stages.

In the TEAGER tool suite we implemented several input selection strategies. The
strategies range from using given fixed input sequences to using specific models de-
scribing the environment. The former allows special value testing and is used for very
specific test purposes like the coverage of a certain path or state. The latter allows to
model varied behavior of an environment based on probabilities. The most general one
is an environment in which all inputs can happen at any time with the same probability
(uniform distribution). In a more specific environment different probabilities are as-
signed to the inputs (a prior distribution). Thus the occurrence of specific inputs can be
influenced. We also use a variant of this strategy where we adapt the probabilities once
an input is chosen (dependant distribution). For every input a weight is assigned and
decremented if the input is selected. If all weights are equal to zero the initial assign-
ments will be used. With this strategy we ensure that eventually every event is chosen.

54 D. Seifert

The most expressive way to describe the environment is to model it with probabilistic
state machines. Using state machines allows to model dependencies among inputs in
a sequence. It also allows to completely reassign input probabilities depending on the
assumed state of the system under test. For example, the probability of dialing a num-
ber before lifting the receiver of a telephone is certainly different from the probability
of dialing after lifting the receiver. In summary, we use different complex strategies to
describe assumed environments to select relevant and interesting inputs. For a detailed
description of our input selection strategies we refer to [28].

3.3 Test Case Generation Algorithm

During test case generation we consider a finite set of finite sequences of inputs and
calculate all possible correct observations for these inputs. We use these observations to
automatically evaluate the test execution process. Considering complex data during the
test case generation process is not scope of this paper and we skip the corresponding
details here. The problem which specific data to choose is part of ongoing research. In
the current approach data are chosen randomly during the test case generation.

To calculate the possible correct observations we stepwise explore the state ma-
chine’s state space for the given input. The challenge is to correctly consider all seman-
tic subtleties. We do this in a two step algorithm. First, we initialize the state machine
with its initial status (i.e., with its initial configuration, an empty queue and an initial
data assignment). We insert the first input event to the event queue and apply a semantic
step to this configuration. This includes that we calculate all possible FTSs. For every
FTS and every possible execution order of the transitions inside these sets we calculate
the resulting status. It is important to note that we calculate a fix-point for this set. That
means, that no new status can be reached from any calculated status. Thus we yield a set
of all reachable status including all intermediate status for the first event. To store the
intermediate status is important for handling possible interleavings of input and inter-
nally generated events. Second, we insert the next event to every reachable status in the
previously calculated set. Thus we respect possible interleavings of events in the event
queue. Then we again calculate all reachable status for this input and proceed in the
same way for the remaining inputs. Consequently, we calculate the graph of all execu-
tion paths including the reachable status. Only this stepwise calculation of all reachable
status ensures that all possible execution paths for the given input sequence are calcu-
lated. This includes all non-determinism in the specification (modeled and arising from
the semantic model of state machines) and effects from processing events asynchro-
nously. Figure 3 visualize the principle of the calculation of an execution graph for the
abstract input sequence [a,b,c]. The dashed parts show the newly calculated parts in
the subsequent step. For example we can see that by processing the queue [a,b] we
reach different status than by processing both events separately.

In the following we illustrate the key point of the algorithm by means of an short
abstract example. Let us assume that an internal event i is generated when processing
an event a. Let us further assume that processing an i will produce an internal event j.
For the next test case we want to process the input sequence a·b. During test execution
we have to trigger the SUT first with a and then with b with an (currently) undefined
time gap between the events. The challenge is that we cannot predict the actual queue

Conformance Testing Based on UML State Machines 55

a

a
b

b b

b

b

a

c

c

c

c c

c

cb

a

c

Fig. 3. Stepwise state space exploration for the input sequence [a,b,c]

of the SUT during test case generation. Consequently we do not know how event b will
interleave with the internally generated events i and j. For this reason we first insert a
into the queue and calculate the three reachable status: [i],[j],[]. The first queue
results from just processing a. The second results from processing a and then i and
the third results from processing a, then i and then j. By inserting b into all reached
queues we prepare for respecting all possible interleavings. The resulting queues are
[i,b], [j,b], [b] and during the next step [b,j] which properly respects one
possible interleaving. Event b will also be inserted to the queue [a] resulting in queue
[a,b]. This reflects the situation that we triggered both inputs before the system under
test processed the first one. Figure 3 visualize this situation in the second graph.

After processing all events from the input sequence we can identify among the set of
all reached status those status which are finally reached. These status (located at the hull
of the execution graph) are quiescent. That means that their event queue is empty and
thus they cannot proceed without a new input from the environment. Figure 4 shows at
the right side an execution graph with the reached status at the hull. We extract from
these the observations that would be emitted (i.e., the events the state machine sends
to the environment) when executing this particular path. The extracted observation se-
quences comprise all possible correct observations we can make when triggering the
system under test with the input sequence. Now the idea is to treat all observations as
the alphabet of a language and the calculated observation sequences as accepted words
of these language. Accepted observation sequences cause the test execution to pass. All
other sequences cause the test execution to fail. Now we just need to build an acceptor
for the calculated observation sequence and use them as the test oracle.

Finally, we need to overcome one open problem which can arise when calculating
the execution graph. We previously mentioned that we determine for an input sequence
the fix-point for the reachable status. Due to the fact that state machines can generate
(internal) events and produce internal infinite loops the calculation of these fix-points
does not terminate in any case (we also subsume the problem that the time to calculate
the fix-point is unacceptable high). To overcome this problem we limit the number of
steps needed to calculate all subsequent status to an upper bound. Technically, every
reached status has got a counter for the number of steps necessary to reach this status.
If a counter reaches the specified upper bound we mark this status and abort further
processing of this status. Figure 4 shows this in the lower left corner.

56 D. Seifert

... [u,s,t]

[...]
[...]

[u,v,

[x,v,

[x,y,z]
[...]

[...]

[...]

inconclusive
t

s

u
x

v

y

v

...

w

z

w

pass

Fig. 4. Execution graph and the resulting acceptance graph with an inconclusive verdict

As a consequence we calculate two types of observation sequences. One which could
be calculated within the given bound, and one which could not. The latter type could
be interpreted as follows: all observations made so far are correct, but not all obser-
vations could be calculated. For the test execution and evaluation this means that after
processing all calculated observations, we have no further observations to which we
can compare the remaining outputs of the SUT. We can neither say that further obser-
vations are correct nor can we say that they are not. We can only stop testing the SUT
with this input sequence and give an inconclusive test verdict. This verdict says that
all observations so far are correct but that we stopped further processing the current
execution path. It would also be possible to decide for a pass or a fail verdict. But in-
troducing a third verdict allows a finer distinction of differently caused test execution
results. Hence, we distinguish two sets of possible observation sequences and the ac-
ceptance graph we build out of these sets comprises two accepting nodes. One for all
observation sequences which could completely be generated and one for all observation
sequences which were bounded. The acceptor itself is a deterministic finite automaton
accepting both sets of observation sequences. A test case execution finishing in one of
these nodes results in a pass or an inconclusive verdict. All observations not covered by
the acceptance graph result in a fail verdict. On the right side of Fig. 4 you can see an
acceptance graph for the execution graph on the left side.

A test case comprises the input sequence to stimulate the system under test and an
acceptance graph to automatically evaluate the execution of this test case. The length
of a test case and the number of test cases can be influenced by the selection policy of
input sequences as explained above. The generated test suite is sound. That means that
no correct systems under test will be rejected due to a test case. Instead, the test verdict
fail will only be assigned if the observation of the system under test cannot be explained
by the possible correct observations of the specification (see the conformance relation
for state machines). This is true because we calculate all possible execution paths to
generate the sets of possible correct observations. With unlimited computation power
and time the presented algorithm is able to compute a complete test suite, which is
capable to exactly differentiate between correct and incorrect implementations.

Algorithm 1 shows the control structure of the test case generation algorithm. The
loop will be executed as often as inputs should be sent to the system under test in the

Conformance Testing Based on UML State Machines 57

input : state machine: sm
output
:

an acceptance graph

sm.configuration ← initial configuration
result ← initial simulation node
inconclusives ← ∅

while |trigger| < input length do
trigger ← generate a new trigger
store ← ∅

forall node ∈ result do
node.queue ⊕ trigger
store ∪ {node}

steps ← 0
while result �= ∅ ∧ steps < limit do

temp ← simulationStep(result)
steps ← steps + 1, result ← ∅

forall node ∈ temp do

if steps = limit then
inconclusives ∪ {node }

else
store ∪ {node}
result ∪ {node}

result ← store;
generateAcceptanceGraph(result,inconclusives)

Algorithm 1. Test case generation: control structure

test case. The inner while-loop controls the fix-point calculation of reachable status.
While there are newly generated status the simulation step is successively repeated
to calculate all reachable status. If there are no newly generated status the algorithm
proceeds with the next input event. The results of the loop are a set of all completely
calculated observation sequences and a set of all incompletely calculated observation
sequences. Out of these sets an acceptance graph will be calculated.

Algorithm 2 shows the calculation of the successive status for the calculated status
in the previous step. First, the state machine is initialized with the configuration from
the status and the next trigger event is selected from the corresponding event queue.
Then, all possible FTSs and all possible transition execution orders are executed to
estimate the resulting status and the generated events. This includes: saving reached
configuration, adding internal events to the input queue, and saving generated events
which should be sent to the environment. The latter events are the possible correct
observations which we use to build the acceptance graphs. Both the successive status
and the generated events will be stored in a new simulation node. The set of all new
simulation nodes will be returned as the result of the simulationStep.

The presented algorithm has exponential complexity. This complexity arises from the
branch factor introduced by the different sets of firing transitions, the different possible
execution orders of transitions, and the necessity to consider possible interleavings in

58 D. Seifert

input : set of simulation nodes: input
output
:

set of new generated simulation nodes: result

result ← ∅

forall node ∈ input do

if node.queue �= <> then
sm.configuration ← node.configuration
event ← node.dequeue
forall T‖ : sm.getFTS(event) do

permutations ← permute(T‖)
forall firing transitions: permutations do

effects ← []
forall t: firing transitions do

effects ← fire(t)
temp ← node
temp.configuration ← sm.configuration
forall effect: effects do

forall ev: effect do
if ev /∈ ESM then

temp.observation ⊕ ev
else

temp.queue ⊕ ev;

result ∪ {temp }
sm.configuration ← node.configuration

return result

Algorithm 2. Test Case Generation: Simulation Step

the event queue (asynchronous event processing and non-observable event store). The
effort to calculate a test case grows with the length of an input sequence x̃ and indirectly
by the number of internally generated events (expressed as a functional relation: f (x̃)).
The branch factor is bounded by the finite number of transitions and the finite number
of events (c). Thus we can approximate the effort A to generate a test case for a given
input sequence of length x as follows:

A(x) ∼ ec ·(x+ f (x̃)) (10)

This exponential effort is visualized in the left diagram in Figure 5 by the gray doubly
dotted graph. Due to the character of state machines this exponential effort cannot be
avoided when pre-calculating test oracles. To weaken this problem we are also working
on strategies to split input sequences and to combine test cases, respectively.

3.4 Combining Test Sequences

When testing non-terminating reactive systems it is also interesting to execute longer
input sequences. To reduce non-determinism in the specification is not possible with-
out any further knowledge about the system under test. Thus we concentrate on the

Conformance Testing Based on UML State Machines 59

C
om

pu
ta

tio
n

T
im

e
in

 S
ec

on
ds

Length of the Input Sequence

actual calculation costs
mean calculation costs

Fig. 5. Linearization of the exponential Complexity

asynchronous event processing. The lion’s share of the calculation effort results from
respecting all interleavings of the input sequence with internal generated events. We
can argue that it is not necessary to consider all of these interleavings. For example, in
practice it is the case that the system under test immediately starts to process the first
received input. It usually does not wait until ”ten” events are received from the environ-
ment. With the distance of two events in the input queue the probability decreases that
an internally generated event (as a consequence of processing the first event) interleaves
with the second one.

Based on this idea we developed various strategies to reduce the calculation effort. To
demonstrate the core idea we implemented a strategy where we introduce so called ob-
servation points. Observation points are points in time where we give the system under
test enough time to calculate its reaction. Related to our semantic model of state ma-
chines the system under test reaches a status in which the event queue is empty. Hence,
no more reaction can be produced for the given inputs. This is true for all status at
the hull of the execution graph from the previous section. Continuing after such an ob-
servation point now means: to enqueue the next input to all (non-inconclusive) status
on the hull of the previously calculated execution graph (note that for these status the
event queue is empty). We also reset the collected possible observations and calculate
the corresponding acceptance graph. This is possible because we assumed that the sys-
tem under test has completely calculated its reactions. Now we proceed to calculate the
possible correct observation sequences for the complete next input sequence. An im-
provement of this strategy is to collect possible correct observations for more than one
observation point and then generate one acceptance graph for all input sequences.

The reduction in the computation effort results from the fact that we do not consider
possible interleavings resulting from events in the previous input sequence with events
in the next input sequence. The left diagram in Figure 5 visualizes this procedure. We
repeatedly calculate only the first part of the exponential curve. The overall calculation
effort follows from adding the efforts needed to calculate the observations for the indi-
vidual input sequences (the (red) solid graph). The average effort has a linear gradient
depicted by the (blue) dotted graph. Compared to the effort for processing one input se-
quence with the length of the sum of all sub-sequences this is an enormous reduction in
the calculation effort. The effort for combined test sequences still grows exponentially

60 D. Seifert

inconclusive

... pass

pass

input2input1 inputn

Fig. 6. General structure of a combined test case

with the length n of the particular input sequences but linear with the number x/n of
combined sequences and consequently with the length x of the overall input sequence:

Acomb(n,x) ∼ ec ·(n+ f (ñ))

n
· x (11)

As a consequence of generating multiple acceptance graphs we would over-approxi-
mate the possible correct behavior. That means that we consider more observation
sequences to be correct. This follows from the fact that observation sequences from
different acceptance graphs can be combined in any possible order. This would not be
possible for a complete input sequence. Consequently, the generation of an acceptance
graph should be delayed as much as possible (e.g., in relation to the memory consump-
tion). The generated test cases are still sound if the introduction of observation points
is valid for the SUT.

Depending on the used testing strategy we can parameterize how test cases should
be generated and combined. On the one hand by the effort we need to process the total
count of inputs, and on the other hand by the reduction capability when splitting the
input sequence into smaller parts. Figure 6 shows the structure of a test case with multi-
ple input sequences and corresponding acceptance graphs. When reaching a pass node
we continue to trigger the SUT with the next input sequence and check the newly gene-
rated output of the SUT at the next observation point. Experiments with this ”static”
strategy showed that if we can introduce such observation points for the system un-
der test this strategy works quite well. But we also work on more elaborate ”dynamic”
strategies (e.g., to take advantage of specific properties of used events of the event store,
probabilistic strategies to specify possible event interleavings, or memory and time
consumption).

3.5 Evaluating the Test Process

If a test suite is generated with the algorithm above and if a SUT is tested with this
test suite we would like to know how extensively we tested the system under test. The
number of test cases and the length of the input sequences in the test cases only con-
ditionally allow to draw conclusions related to that question. Still today the question is
hard to answer. The mostly used approach is to measure the coverage of different ele-
ments of the system under test or the specification. For program code this is common
practice. The used criteria are usually based on control flow or data flow information
in the code or on functional description in the specification. With our test approach we

Conformance Testing Based on UML State Machines 61

System under Test
TCP / IP

State
Machines

Test
Suites

TCGD

Adapter

State Machine Executor

Adapter

Test Driver

Test Case Generator

O

O

I

I

Fig. 7. Architecture of the TEAGER tool suite

address embedded reactive systems composed of hardware and software components.
You can apply well known techniques to measure coverage in the software components,
but our impression is that this is not sufficient for such systems. To measure coverage in
the hardware components is usually not possible. The only way to regard the whole sys-
tem is to use the specification. In further work we develop meaningful criteria for state
machines. Our current work introduces different criteria based on structural elements
of state machines, like states and transitions, and on semantic elements, like configura-
tions and sets of firing transitions. Especially semantic criteria are able to evaluate the
behavior in a more meaningful manner. An interesting question is whether it is possible
to use such criteria to control the test case generation process (i.e., to measure coverage
while generating test cases and to select the next inputs according to this coverage).

4 Experimental Results

To evaluate our complete test approach we implemented the TEAGER tool suite [29].
TEAGER consists of an environment to automatically generate and execute test cases,
and additionally of an environment to execute state machine specifications. We use the
latter to analyze the execution behavior and the testability of a state machine, and to
measure coverage on a state machine specification to evaluate generated test suites.
Figure 7 shows this general architecture. We us the TEST CASE GENERATOR to au-
tomatically generate test cases out of a state machine specification. A state machine
specification is executed to compute the possible correct observation sequences for se-
lected inputs. Based on them an acceptance graph is generated as the test oracle. Input
sequences and acceptance graphs are stored for each test case in separate files for later
execution. The TEST DRIVER in turn loads saved test cases and executes them. The ex-
ecution includes both: stimulating the system under test and comparing the observation
to the computed possible correct behavior in the acceptance graphs. The communication
with the system under test takes place over a socket connection using pre-implemented
adaptors. This concept offers a flexible way to connect the system under test. It also of-
fers the possibility to use our STATE MACHINE EXECUTOR as a system under test stub.
Thus we can analyze the execution behavior of state machine specification or measure
the coverage of a used specification. The complete test case generation process is para-
meterized to have maximal control over the structure of test cases and the effort needed
to calculate them. For more information about the TEAGER tool suite, its individual
components, and the used parameters, we refer the interested reader to our web site
(swt.cs.tu-berlin.de/∼seifert/teager.html).

62 D. Seifert

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 3 6 9 12 15 18 21 24 27 30

C
al

cu
la

tio
n

T
im

e
in

 S
ec

on
ds

Burst Length

test generation
test execution

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of combined Bursts

(determ.) burst: 60
(nondeterm.) burst: 11

(car audio system) burst: 15
(car audio system) burst: 17
(more repetitions) burst: 17

Fig. 8. Results for the first and second experiment

We applied two case studies on Pentium IV 2.6 GHz to evaluate our test case gener-
ation and execution. First, the Car Audio System from Section 2 and second, a system
to control the sun blinds of an office building [25]. Generally speaking the results from
both case studies allow the same interpretation. In the following, we briefly review
some results from the Car Audio System case study to give an impression of the exe-
cution behavior of our test approach. We present two different experiments. In the first
experiment we demonstrated the exponential calculation effort needed to calculate the
possible correct observations. In the second experiment we demonstrated the effect of
combining multiple input sequences. We used the state machine model from Figure 1
as specification. In all experiments we generated a test suite comprising 25 test cases.
In the first experiment we varied the length of the input sequence and in the second ex-
periment we fixed the length of the input sequences but varied the number of combined
sequences.

Figure 8 illustrates the results of the two experiments. The (red) solid graph in the left
picture clearly shows the exponential calculation effort of the test generation process.
But it also shows that a relatively long input sequence can be processed even for a
complex system. The (blue) dashed graph shows that executing a test case takes con-
siderably less time, and that the time need only slightly increases the longer the input
sequences are. From this it follows that the strategy to spend more time in test case
generation to generate longer test cases and to save the test cases to be able to execute
them multiple times is worthwhile. The (blue) dashed graph (burst size of 15) and the
(red) solid graph (burst size of 17) in the right picture visualize the results of the sec-
ond experiment. The unequal gradients of the subsections in the graphs result from the
different calculation effort for the particular inputs (which were selected by a random
strategy). To verify this we executed the experiments multiple times and calculated the
mean values (the lower (blue) dashed graph). This graph shows that the generation
times converge towards a linear graph. Additionally, we experimented with a determin-
istic and a non-deterministic specification (the green and magenta graph). The graphs
clearly show the expected linear gradient. Finally we mention that the execution effort
increases due to the higher number of observation points (which requires to wait for
all system reactions). In practice, we need to choose an optimum with respect to the
calculation effort and the execution time.

Conformance Testing Based on UML State Machines 63

5 Summary and Outlook

Testing benefits from the fact that the actual system is brought to execution. Thus, the
interaction of the real hardware and the real software can be evaluated. It is applicable
at different levels of abstraction and at different stages of the development. It aims
in falsification, that means to show inconsistencies between the specification and the
developed system.

Our test approach allows to use UML state machines in quality assurance to pre-
cisely specify the reactive behavior of a system, and thus, to serve as the basis for
the automated test case generation, execution and evaluation. To generate tests we se-
lect relevant input sequences and calculate the possible correct observation sequences
for them. Based on these observations we calculate the test oracles which we use to
automatically evaluate the test executions. Manually performed, this is a difficult and
time consuming task. The approximation techniques we applied make the generation
process efficient. It is possible to control the complete process via parameters depend-
ing on the time and computation power you want to invest. The modularization of the
tasks gives our approach a clear structure and makes it interesting for further research.
All discussed strategies are implemented as modules of the TEAGER tool suite. Thus,
different strategies for selecting inputs, for combining test cases to reduce the calcula-
tion effort, or to select relevant data during test case generations can be studied indepen-
dently from each other. Moreover, in practice this allows adaptation to different needs.
We use a precisely defined semantics for UML state machines which includes complex
structured data. We do not restrict state machines to ease test case generation. Instead,
we follow the semantics description of the UML standard [1] as much as possible.
Only misleading or conflicting statements are clarified. We address all semantic details
which arise from the different sources of non-determinism. In particular we address the
problem of asynchronous communication which is introduced by the run-to-completion
semantics of state machines. Many real life systems can show such behavior.

Our ongoing research deals with a comprehensive integration of our approach into
an UML-based development. In particular we address questions: how to combine our
approach with a component-based development approach and how to combine our tech-
nics with other successfully applied testing technics. Furthermore we integrate more and
more syntactical elements into our formal semantics and analyze their influence on the
automated test generation process. Perspectively we address two challenges, namely
specifying and testing timed behavior and considering complex data to generate ”inter-
esting” test cases. We also develop techniques to control and evaluate our automated
processes. Measuring coverage, especially on the specification, is one step into this di-
rection. We are analyzing criteria based on state machines and their semantic model.

References

1. UML2: Unified Modeling Language: Infrastructure and Superstructure. Object Management
Group, Version 2.1.1, formal/07-02-03 (2007), http://www.uml.org/uml

2. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive Verification of UML
State Machines. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308. Springer, Heidelberg (2004)

64 D. Seifert

3. Lilius, J., Paltor, I.P.: Formalising UML State Machines for Model Checking. In: France,
R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723. Springer, Heidelberg (1999)

4. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset of UML
Statechart Diagrams Using the SPIN Model-checker. Formal Aspects of Computing (1999)

5. De Nicola, R., Hennessy, M.C.B.: Testing Equivalences for Processes. Theoretical Computer
Science (1984)

6. Brinksma, E.: A Theory for the Derivation of Tests. In: Protocol Specification, Testing and
Verification. North-Holland, Amsterdam (1988)

7. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. Software–
Concepts and Tools (1996)

8. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines - A Sur-
vey. In: Proceedings of the IEEE (1996)

9. Petrenko, A.: Fault Model-driven Test Derivation from Finite State Models: Annotated Bib-
liography. LNCS. Springer, Heidelberg (2001)

10. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. LNCS.
Springer, Heidelberg (2001)

11. Fujiwara, S., van Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test Selection
Based on Finite State Models. IEEE Transactions on Software Engineering (1991)

12. Yang, B., Ural, H.: Protocol Conformance Test Generation using multiple UIO Sequences
with Overlapping. SIGCOMM Computer Communication Review (1990)

13. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE Transactions
on Software Engineering (1978)

14. Luo, G., van Bochmann, G., Petrenko, A.: Test Selection Based on Communicating Nonde-
terministic Finite State Machines Using a Generalized Wp-Method. IEEE Transactions on
Software Engineering (1994)

15. Gnesi, S., Latella, D., Massink, M.: Formal Test-case Generation for UML Statecharts. In:
Engineering Complex Computer Systems (ICECCS). IEEE Computer Society Press, Los
Alamitos (2004)

16. Offutt, A.J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-based spec-
ifications. Software Test, Verification. Reliability (2003)

17. Latella, D., Massink, M.: A Formal Testing Framework for UML Statechart Diagrams Be-
haviours: From Theory to Automatic Verification. In: International Symposium on High-
Assurance Systems Engineering. IEEE Computer Society Press, Los Alamitos (2001)

18. Latella, D., Massink, M.: On Testing and Conformance Relations for UML Statechart Dia-
grams Behaviours. SIGSOFT Software Engineering Notes (2002)

19. Offutt, J., Abdurazik, A.: Generating Tests from UML Specifications. In: The Unified Mod-
eling Language (UML). Springer, Heidelberg (1999)

20. Pretschner, A., Lötzbeyer, H., Philipps, J.: Model based Testing in incremental System De-
velopment. Journal of Systems and Software (2004)

21. Hartman, A., Nagin, K.: The AGEDIS Tools for Model Based Testing. In: International
Symposium on Software Testing and Analysis (ISSTA 2004), pp. 129–132 (2004)

22. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer. Technical
Report MSR-TR-2005-59, Microsoft Research (2005)

23. Harel, D.: Statecharts: A Visual Formulation for Complex Systems. Science of Computer
Programming (1987)

24. Seifert, D.: An Executable Formal Semantics for a UML State Machine Kernel Considering
Complex Structured Data. Technical Report inria-00274391, DEDALE (LORIA) (2008)

25. Seifert, D.: Automatisiertes Testen asynchroner nichtdeterministischer Systeme mit Daten.
Shaker Verlag, Also: PhD dissertation, Technische Universität Berlin (2007)

Conformance Testing Based on UML State Machines 65

26. Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology (1996)

27. De Nicola, R.: Extensional Equivalences for Transition Systems. Acta Informatica (1987)
28. Seifert, D., Souquières, J.: Using UML Protocol State Machines in Conformance Testing of

Components. Technical Report inria-00274383, DEDALE (LORIA) (2008)
29. Santen, T., Seifert, D.: Teager - Test Automation for UML State Machines. In: Software

Engineering 2006. LNI, GI (2006)

An Approach to Testing with Embedded

Context Using Model Checker

Lihua Duan and Jessica Chen

School of Computer Science, University of Windsor
Windsor, Ont. Canada N9B 3P4
{duan1,xjchen}@uwindsor.ca

Abstract. Testing each component in isolation is not always feasible.
We consider FSM-based deterministic testing on an Implementation Un-
der Test (IUT) together with some other correctly implemented compo-
nents as its context. The behavior of the context needs to be taken into
account for generating test sequences. We employ model checking tools
to retrieve necessary information from the context specification so that a
test suite for the IUT integrated with its context can be generated. The
use of model checking tools frees us from the necessity of constructing
the global model of the IUT and its context, and thus helps avoid the
state explosion problem. In the current work, we consider the situations
when the context is an embedded system, i.e. it communicates and only
communicates with the IUT. In this setting, we present a method to de-
rive a complete test suite that can be used to check for trace pre-order
between the FSM representing the integrated implementation of the IUT
and its context and the synchronous product of the specification FSM of
the IUT and that of its context.

Keywords: finite state machines, conformance testing, context-based
testing, test sequences, distinguishing sequences.

1 Introduction

Given a final software product, we are interested in knowing whether it conforms
to what we expect. Conformance testing has been extensively studied and has
turned out to be an effective tool for us to gain enough confidence in the correct-
ness of our product implementation with respect to the expectations. It has two
main characteristics: (i) Different from a formal verification approach, here the
implementation (called implementation under test (IUT)) is treated as a black box
from which we can only infer its behavior by providing input to it and observing its
output. (ii) Instead of simple input/output pairs, the expected behavior in differ-
ent states is formally specified. This is because in most of the cases, the given IUT
is stateful in the sense that it reacts differently (e.g. by giving different outputs)
to the same input provided at different time of the execution.

There are various tools to describe the expected behavior in different states.
Suitable for different levels of abstractions, they range from formal specifica-
tion languages such as process algebras, to structural/operational modelling

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 66–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Approach to Testing with Embedded Context Using Model Checker 67

languages such as (input/output) labelled transition systems (LTSs) and Finite
State Machines (FSMs). Of course, when a specification is given in some high
level formal specification languages, we may still refer to its formal model.

Given a formal model S in terms of e.g. LTS or FSM, describing the expected
behavior of the IUT, we can imagine that the IUT behaves according to a certain
abstract machine M in the same format. In this setting, conformance testing
amounts to establishing the correspondence between S and M. There are several
relations proposed in the literature in this regard: the trace equivalence relation,
the ioco conformance relation [1], the quasi-equivalence relation [2], etc. In this
work, we consider trace pre-order �. S � M holds if any (input/output) trace
allowed by S are implemented, yet a trace not specified in S may or may not be
implemented. In a special case when the specifications of the IUT and its context
are both completely specified, our results may hold for trace equivalence.

There is usually an infinite number of traces in a given model of the desired be-
havior and the one representing the IUT, some of them with infinite lengths. The
ultimate goal for test generation is to find a sufficient and efficient set of finite input
sequences, i.e. a test suite, from a given model so that when these input sequences
are given to the IUT, we can, by comparing the actual output sequences with the
expected ones, draw a conclusion whether the trace pre-order holds between the
model of the expected behavior and the one representing the IUT.

This goal can be better achieved with the slow environment assumption well-
adopted in the literature, i.e., whenever an input reaches the system, the system
will always prompt the output for it and reach a stable state (i.e. there is no
more executable statement from that state) before the next input can reach the
system. In other words, each input is explicitly associated with one or more
outputs. In this setting, under the assumption that the given model and the one
representing the IUT share the same sets of inputs and outputs, we may be able
to identify a state in the model that represents the IUT by observing a sequence
of outputs in response to a special sequence of inputs. In protocol testing, people
used FSMs to represent the state changes with the paired input and output, and
have explored the characteristics of such special input sequences as expressed in
the notions of characterization set [3], Unique Input/Output sequence (UIO) [4],
distinguishing sequence [5]. With a characterization set, a set of UIO sequences,
or a distinguishing sequence, we can identify the states in the implementation
FSM with those in the specification FSM, based on which we can further verify
the correspondence of the transitions in the specification FSM with those in
the implementation FSM. This helps us establish an equivalence or pre-order
relation between the specification FSM and the implementation FSM.

One of the major drawbacks of FSM-based testing is that the specification
FSM, possibly derived from a specification given in a higher level of abstrac-
tion, suffers from the state explosion problem: it may have too large a state
space even if we only consider the control data. This is troublesome especially
when we consider testing more general software systems than communications
protocols. A promising solution to this problem is found in the compositional
testing approach: we can apply FSM-based testing techniques for unit testing,

68 L. Duan and J. Chen

while leaving the correctness of the integrated system to formal verification. Of
course, this is a sound approach only if the considered equivalence or pre-order
relation is compositional, e.g., if the specifications representing components I1

and I2 are X-equivalent to their respective behavioral specifications S1 and S2,
then without performing integration testing or system testing, we know that the
integration of I1 and I2 is a correct implementation of the parallel composition
of S1 and S2 with respect to this X-equivalence. As we know, trace equivalence
and trace pre-order are compositional when I1 and I2 are sequentially executed
components represented by deterministic FSMs. The condition for ioco confor-
mance relation to be compositional is given in [6].

Along the compositional testing approach to applying FSM-based testing tech-
niques to unit testing, we may still encounter difficulties. One of them comes from
the fact that testing each component in isolation is not always feasible. There
are situations when we have to test a component together with some others.

As pointed out in [2], this can be the case when the IUT is an embedded
part of a complex system under test. As another example, suppose we want to
test a web-based composite service implementation I1. I1 makes use of another
component service I2 which is known to be correct. When testing I1 in isolation,
we have the difficulty in providing input and observing output all encapsulated
according to certain protocol such as SOAP. Testing I1 in isolation also invokes
the necessity of testing the interoperability between I1 and I2. A better solution
is to test I1 and I2 together where I2 is considered as the context of I1.

Following the framework presented in [2] on testing in context, we consider
the problem of FSM-based deterministic testing on (I, Ic) which is an IUT
implementation I together with a correct context implementation Ic. In our
current work, Ic is an embedded system, i.e. it does not communicate with any
component other than I. The communication port between I and Ic is not
controllable but observable. This means that the tester can neither provide input
to the IUT using this port nor stop an input from the context to the IUT. It
can, however, observe all the input from and all the output to the context. The
specification of I is given in terms of a 2-port FSM, one port for communicating
with its context and one for its input/output with the environment/tester. The
specification of Ic can be given in terms of either a specification language or a
structural modelling language. We present a method to generate a suitable test
suite that can be used to test (I, Ic). More precisely, we modify the well-known
W-method [3] to construct test sequences in order to establish trace pre-order
between the FSM representing (I, Ic) and the product of the specification FSM
of I and that of Ic. The ultimate goal of our work is to avoid generating the
operational model of the give specification of Ic (if a higher level specification is
provided) and constructing the global model of I and Ic. In order to do so, we
employ model checking tools to retrieve necessary information from the context
specification so that test sequences for (I, Ic) can be generated. In this way, we
avoid the notorious state explosion problem. Note that it is straightforward to
extend our work to a more general case where the embedded context consists of
a set of components, each having its own port to communicate with I.

An Approach to Testing with Embedded Context Using Model Checker 69

The rest of the paper is organized as follows. In Section 2 we give a brief
notational background introduction to FSM and FSM-based testing that will
be used later on. Our problem is explained in detail in Section 3, followed by a
guideline of a possible solution. How to use model checking tools to generate a
complete test suite is presented in Section 5. To better illustrate our method, we
give a running example in Section 6. At the end, we position our work among
other pieces of related work, and conclude ours with some final remarks.

2 Notational Background

In this section, we introduce the preliminary notations and terminologies on
n-port finite state machines and test sequence construction. They will be used
later in this paper.

2.1 n-Port Finite State Machines

As we mentioned in the Introduction, we assume that the specification S of the
IUT is given in terms of a 2-port FSM. A deterministic n-port Finite StateMachine
(also called finite state machine for short) is defined by a tuple (S, I, O, δ, λ, s0).

– S is a finite set of states where s0 ∈ S is its initial state.
– I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i (i = 1, . . . , n).

Being abstract, these input symbols encapsulate the information of the com-
munication channels. Thus, without loss of generality, we can assume that
the input symbols at different ports are distinct, i.e. Ii ∩ Ij = ∅ for i �= j.

– O = Πn
i=1Oi where Oi is the output alphabet of port i (i = 1, . . . , n).

Each o ∈ O is a vector of outputs denoted by o = 〈o1, . . . , on〉 where oi ∈ Oi

for i = 1, . . . , n. We do not consider the order in which we observe output
oi and oj at different ports. When there is no output at a port i, we use a
special and distinct symbol − to denote it.

– δ is the transition function that maps S×I to S, and λ is the output function
that maps S × I to O.

The input and output symbols are abstract: The discussions on data types
and complicate data structures in the input and the output are not considered.

Note that λ and δ are partial functions. We will use δ(s, i) = null to denote
that there is no image of δ for the given state s of S and the given input i of
I. In this case, we also have λ(s, i) = null. Furthermore, we extend the input
of λ and δ from an input alphabet to a sequence of input alphabets with their
meanings obtained straightforwardly from the original ones.

A transition t is defined by a tuple (s1, s2, i/o) in which s1 is the starting state,
i is the input, s2 = δ(s1, i) is the ending state, and o = λ(s1, i) is the output.
The input/output i/o is called the label of t. We use T to denote the set of all
transitions in S.

Let ti be a transition for 1 ≤ i ≤ k. A path ρ = t1 t2 . . . tk is a finite sequence
of transitions such that for k ≥ 2, the ending state of ti is the starting state of

70 L. Duan and J. Chen

ti+1 for all 1 ≤ i ≤ k−1. A state s ∈ S is reachable if there exists a path starting
from s0 and ending at s. We consider FSMs where all states are reachable.

An FSM is completely specified if functions λ and δ are total; otherwise, it is par-
tially specified. We consider that the given specification FSMs are partially spec-
ified. Results in our approach when a given specification is completely-specified
are discussed at the end. Note that if an FSM S is not completely specified, it is
possible to make S completely specified by adding transition (s, s, i/〈−, . . . ,−〉)
for each s ∈ S, i ∈ I such that (s, i) /∈ domain(δ). This, however, slightly changes
the meaning of the FSM and is not always acceptable.

Two states si and sj are equivalent if, for every input sequence σ, λ(si, σ) =
λ(sj , σ). If λ(si, σ) �= λ(sj , σ) then σ distinguishes between si and sj . An FSM
M is minimal if every state can be reached from the initial state of M and no
two states of M are equivalent. Since only deterministic FSMs are considered,
we can easily obtain a minimal FSM from any given FSM. In the following, we
assume that all given FSMs are minimal.

2.2 Distinguishing Sequence and Test Sequence Construction

Let ρ = (s1, s2, i1/o1)(s2, s3, i2/o2) . . . (sk, sk+1, ik/ok) (k ≥ 1) be a path in an
FSM. We will use is(ρ) to denote the input sequence i1 ◦ i2 ◦ . . . ik of ρ. Note that
for clarity, we use ◦ as a separator in a sequence of input, a sequence of output,
or a sequence of input/output pairs. A test sequence is an input sequence and
is typically obtained from a path of a given specification FSM. A test suite is a
finite set of finite test sequences. Usually, we assume that the IUT can always
be reset to its initial state from any state and thus a test suite refers to a set of
input sequences derived from paths that start from the initial state s0. In this
way, we can carry out the test with the test sequences in a test suite one by one.
For each input sequence σ in a test suite, we will use path(σ) to denote the path
that σ is derived from. We will also use out(σ) to denote the expected output
sequence which is actually λ(s0, σ).

Given an FSM S, we are interested in the so-called complete test suites w.r.t.
trace pre-order. That is, by applying its input sequences to the IUT and com-
paring the output sequences with the expected ones, we can distinguish any
implementation FSM M of the IUT if S �� M .

Since S and M are deterministic and minimal, this can be achieved by estab-
lishing correspondence between the states in S and those in M. Then, for each
transition t = (s1, s2, i/o) in S, we construct a test sequence to verify that there
exists a transition t′ = (r1, r2, i/o) in M which starts from a state corresponding
to s1, ends at a state corresponding to s2, and gives the same output o upon the
same input i.

The states in the implementation FSM can be identified via distinguishing
sequence, Unique Input/Output sequence (UIO), or characterization set. State
identification using UIOs is possible but it turns out to be hard and less practical
[7]. A characterization set is easier to find than a distinguishing sequence, yet a
test suite generated using a characterization set [3] is usually much longer than
that generated using a distinguishing sequence in terms of total length of the
test sequences [5, 8–10]. Here we consider using distinguishing sequence.

An Approach to Testing with Embedded Context Using Model Checker 71

A distinguishing sequence is an input sequence D with the following charac-
teristics: the output sequences produced by S in response to D in different states
of S are all different, i.e., for all si, sj ∈ S, if si �= sj then λ(si, D) �= λ(sj , D).

There are various methods proposed in the literature for generating test se-
quences in order to check if an IUT conforms to a given specification FSM. See
[11] for a survey on this topic. A basic idea of constructing a complete test suite
T w.r.t. trace pre-order with a given distinguishing sequence D can be described
as follows.

– For each state sk in specification FSM S, find a path ρk starting from s0

and ending at sk, and add a test sequence is(ρk) ◦D to T . If the IUT passes
test sequence is(ρk) ◦ D, i.e. its output sequence in response to this input
sequence is correct, then we say that the state of the IUT after applying
is(ρk) corresponds to sk. As we assume that the number of states in the
implementation FSM M is no more than that in S, set {is(ρk) ◦D | sk ∈ S}
actually helps us to establish a one-to-one correspondence between the states
in S and those in M.

– For each transition (s1, s2, i/o) in S, add test sequence is(ρ1) ◦ i ◦ D to T .
Since is(ρ1) ◦ D ∈ T , we know that the state of M after applying is(ρ1)
corresponds to s1. Thus, is(ρ1) ◦ i ◦ D helps us to check that there exists
a transition (r1, r2, i/o) in M where r1 and r2 correspond to s1 and s2

respectively: We can verify whether the state of M after applying is(ρ1) ◦ i
corresponds to s2 by applying D on it. This is because from the first step,
we have used the same distinguishing sequence D to identify all the states
in M. We say that transition t = (s1, s2, i/o) is verified in a test suite T if
there exists an input sequence σ such that σ ◦ D ∈ T , σ ◦ i ◦ D ∈ T and
path(σ) is a path in S from s0 to s1.

This is actually a variation of Chow’s W-method [3] in the case when (i) the
number of states in the implementation FSM is no more than that in the speci-
fication FSM; and (ii) a distinguishing sequence rather than a characterization
set is available. Thus, it is straightforward that a test suite such constructed is
complete with repect to trace pre-order.

In the following, we present an extension of this method for testing in context.

3 Problem Description

As noticed in [2], testing an IUT in isolation is quite different from testing it
within a context. First of all, if an IUT is tested within a context and passed a
test, we cannot draw any conclusion about the correctness of the IUT because
a fault in the IUT and a fault in its context may mask each other resulting in
an overall correct execution. Such a problem is out of the scope of our current
work. In the following, we consider that the context is correctly implemented,
with its behavior specified in C.

Recall that in our setting, the FSM for an IUT has two ports: one for communi-
cating with its context, called the context port; and the other for communicating

72 L. Duan and J. Chen

with the rest part of its environment simulated by a tester, called environment
port. For clarity, we will use

– I and O as the IUT’s input and output at the environment port;
– X and Y as the IUT’s input and output at the context port.

The behavior of the IUT is thus given as S = 〈S, s0, I ∪ X, O ∪ Y, λs, δs〉.
We assume that the specification FSM S is free from internal-port-cycles. An

internal-port-cycle in an FSM is a path (s1, s2, i1/o1) (s2, s3, i2/o2) . . . (sk, sk+1,
ik/ok) (k ≥ 2) such that s1 = sk+1, and ij �∈ I for all 1 ≤ j ≤ k. An internal-
port-cycle represents a possibly infinite internal communications between the
IUT and its context, which is normally considered as a design error. How to
guarantee that the design specifications are free from such logical errors can be
carried out by formally verifying the correctness of the design specifications.

An input sequence generated from S cannot be served as an input sequence to
test the IUT in its context Ic, as we cannot control the IUT’s context port. To
take the context into consideration, a possible approach is to develop a testing
technique to check whether M conforms to S within context C w.r.t. trace pre-
order, instead of checking whether M conforms to S w.r.t. trace pre-order. That
is, we compare the model representing the actually behavior of (I, Ic) with the
one specifying its expected behavior. Just like we assume that the actual behavior
of the IUT can be described by an FSM for testing the IUT in isolation, we
assume that the actual behavior of (I, Ic) can be described by an FSM.

The model representing the expected behavior of (I, Ic) can be derived from
the specification of the IUT and that of the context. Suppose that the context
specification C is given as a 1-port FSM. Of course, if it is given in a specification
language with higher level of abstraction, we consider its equivalent FSM model.
Let

C = 〈C, c0, Ȳ , X̄, λc, δc〉
be the specification FSM of the context where X̄ = {x̄ | x ∈ X} and Ȳ =
{ȳ | y ∈ Y } are the output and input symbols of C to communicate with S: x̄
and ȳ are executed simultaneously with x and y respectively, representing the
communications between the IUT and its context. Here we have ignored those
actions internal to the context component.

Note that since we have the slow environment assumption, it makes no dif-
ference to use synchronous or asynchronous communication mode between the
IUT and its context. For simplicity, we consider synchronous communication.

Given S and C as the above defined 2-port and 1-port FSMs, the expected
behavior of (I, Ic) can be described as a synchronous product FSM S×C defined
on S and C as 〈S′, (s0, c0), I, ((O×Y)∪X)∗, λ, δ〉. It has only one port with the
tester/environment for input. A global state consists of a local state of S and a
local state of C. S′ ⊆ S×C is a set of global states reachable from (s0, c0) in the
sense that for any (s, c) ∈ S′, there exists an input sequence σ ∈ I∗ such that
δ((s0, c0), σ) = (s, c).

((O×Y)∪X)∗ is a set of outputs from the tester’s viewpoint. As we mentioned
in the Introduction, we assume that even though the input/output between the

An Approach to Testing with Embedded Context Using Model Checker 73

IUT and its context is not controllable, they are observable. Thus, corresponding
to each input from the environment, the tester will observe a sequence of outputs
which is composed of those outputs 〈o, y〉 of the transitions in S (〈o, y〉 ∈ O×Y)
and those input x from its context (x ∈ X).

A transition in S×C is derived from a path in S and a path in C. More precisely,
we have transition ((s1, c1), (s2, c2), i/o) in S ×C, and thus λ((s1, c1), i) = o and
δ((s1, c1), i) = (s2, c2), only if we have

λs(s1, i1 . . . ik) = o1 . . . ok, δs(s1, i1 . . . ik) = s2,

λc(c1, i
′
1 . . . i′h) = o′1 . . . o′h, δc(c1, i

′
1 . . . i′h) = c2;

for h, k ≥ 1 such that

k = h, i = i1, o = o1 ◦ i2 ◦ o2 . . . ◦ ik ◦ ok,

i′j = c(oj) for 1 ≤ j ≤ k, ij+1 = o′j for 1 ≤ j ≤ k − 1, o′k = −;

or

k = h + 1, i = i1, o = o1 ◦ i2 ◦ o2 . . . ◦ ik ◦ ok,

i′j = c(oj) for 1 ≤ j ≤ k − 1, ij+1 = o′j for 1 ≤ j ≤ k − 1,

ok = 〈∗,−〉 where * can be any output including -;

Otherwise, λ((s1, c1), i) = null and δ((s1, c1), i) = null. Here c(o) represents the
output of o at the context port. Note that in the following, when there is no
confusion, we will drop the subscripts of λ and δ.

Since there is no internal-port-cycle in S, the above defined product FSM
fully describes the expected behavior of the IUT with its context using the slow
environment feature. Furthermore, as we assume that S and C are minimal and
deterministic, the above defined synchronous product of them is also minimal
and deterministic.

Once we have a product FSM specification for the expected behavior of (I, Ic),
it is straightforward to generate a suitable test suite from this product FSM in
order to test whether trace pre-order holds between this specification and the
implementation FSM of (I, Ic).

This approach, however, requires that the FSM specification of Ic be available,
and the global model of (I, Ic) be calculated, which brings out the state explosion
problem. In the present work, we consider using model checker as an auxiliary
tool to retrieve necessary information from a context specification in order to
generate test sequences. We do not require that the product of S and C be
actually constructed. In particular, if the specification of the expected behavior
of Ic is given in a specification language of a higher level of abstraction, we do
not need to construct its operational model neither.

4 Test Generation with Context

To check whether a trace pre-order relation holds between S × C and the im-
plementation FSM of (I, Ic), according to what we introduced in Section 2, we

74 L. Duan and J. Chen

need to generate a complete test suite to identify all the states in S × C us-
ing a distinguishing sequence, and verify all the transitions in S × C using the
same distinguishing sequence. Since the context implementation is known to be
correct, we actually only need to generate test sequences to verify some of the
transitions in S × C. Consequently, we can look for a distinguishing sequence
that is capable of distinguishing only a subset of states in S ×C. In this section,
we characterize such a subset of transitions and a subset of states.

Definition 1 (R covers T). Let T be the set of transitions in S × C, and
R ⊆ T . R covers T if for any transition ((s1, c1), (s2, c2), i/o) ∈ T , there exists
a transition t = ((s1, c

′
1), (s2, c

′
2), i/o) in R where (s1, c1), (s2, c2), (s1, c

′
1), and

(s2, c
′
2) are states in S × C, i is an input of S × C and o is an output of S × C.

The transitions in S×C can be partitioned into different groups according to the
local states of S in their starting states, the local states of S in their ending state,
and their input/output pairs. The above definition actually requires that the
subset of transitions R contain at least one representative transition from each
of the partitions. The intuition behind is this: Since S and C are deterministic,
given two states s1 and s2 in S, an input i and an output o in S × C, there
exists exactly one path ρ in S from s1 to s2 with input/output sequence i1/o1 ◦
i2/o2 ◦ . . . ◦ ik/ok such that i = i1 and o = o1 ◦ i2 ◦ o2 ◦ . . . ◦ ik ◦ ok. According
to the definition of synchronous product, for any states c1, c2 in C, if transition
t = ((s1, c1), (s2, c2), i/o) ∈ T , then t is constructed from this path. Consider all
such transitions in one partition G(s1, s2, i, o). To check that each transition in
G(s1, s2, i, o) is correctly implemented, we only need to make sure that path ρ is
correctly implemented in the sense that there exists a path ρ′ in M which starts
from a state identified as s1, ends at a state verified as s2, and correctly gives
output o in responds to input i. Since the context is correct, this implies that
all transitions in partition G(s1, s2, i, o) are correctly implemented. While any
transition in G(s1, s2, i, o) can be used to generate a test sequence for the above
purpose, we require that the subset R of transitions contains one transition from
each partition G(s1, s2, i, o).

As we consider only transitions in such a subset of transitions R that covers
the total set of transitions in S × C, we only need a distinguishing sequence to
identify all the states appeared as the starting or ending states in the transitions
in R, denoted by states(R). In the following, we show that we can further
weaken this requirement: it is sufficient to have a distinguishing sequence that
can identify, among the states in states(R), all those with different local states
of S.

Definition 2 (distinguishing sequence on S over W). Let W be a subset
of reachable states in S × C. An input sequence D = i1 ◦ x̃1 ◦ i2 ◦ x̃2 . . . ◦ ik ◦ x̃k

for ij ∈ I, x̃j ∈ X∗ (1 ≤ j ≤ k) is a distinguishing sequence on S over W if

– For any state s, s′ ∈ S, s �= s′ implies λ(s, D) �= λ(s′, D).
– For any (s1, c1) ∈ W and for any h (1 ≤ h ≤ k), the input sequence of

X∗ obtained from λ((sh, ch), ih) by removing all output of Y is x̃h. Here for
2 ≤ h ≤ k, (sh, ch) = δ((s1, c1), i1 ◦ i2 . . . ◦ ih−1).

An Approach to Testing with Embedded Context Using Model Checker 75

The above definition can be viewed as an extension of the normal definition of
distinguishing sequence of an FSM: A distinguishing sequence of S over ∅ is ac-
tually the original definition of distinguishing sequence on S without considering
any context.

Note that we do not require an input sequence to distinguish all the states
in S × C, but a subset of states of interest expressed in W . This brings out two
benefits: i) an increased possibility of the existence of a distinguishing sequence;
ii) when there exist distinguishing sequences, a possibly shorter one which con-
tributes to the reduction of the cost for carrying out the test.

Now we show that in order to generate from S ×C a complete test suite w.r.t.
trace pre-order, it is sufficient to consider a subset R of transitions as long as R
covers its set T of transitions, and a distinguishing sequence on S over states(R).

Note that while previous work on this topic for testing in isolation requires
reliable reset, i.e. the IUT can be reset to its initial state at any time, here we
assume that the IUT can be reset to its initial state at any time and its context
will be reset at the same time.

Similar to previous work, we assume a bound on the number of states in the
implementation FSM of the IUT. When we test an IUT with a context, since the
input to the IUT from the context is not controllable, the description of the IUT
can be considered as a 1-port FSM from the tester’s viewpoint. As a consequence,
some of the states in a given 2-port FSM are not stable (so-called transient
states in [2]) in the sense that after an input from the tester/environment, the
IUT will never stay in any of those states waiting for the next input from the
tester/environment. For testing in context, we consider only stable states: When
we say that the number of states in the implementation FSM of the IUT is no
more than the number of states in the specification FSM of the IUT, we refer to
those states that appear to be the starting states of some transitions with input
at the environment port.

With the above assumptions, we present the following result:

Proposition 1. Let T be the set of transitions in S × C and R ⊆ T . Let T be
a test suite derived from S × C. If

– R covers T ,
– there exists an input sequence D such that D is a distinguishing sequence on

S over states(R), and ∀t = ((s1, c1), (s2, c2), i/o) ∈ R, there exists an input
sequence σ such that σ ◦D ∈ T , σ ◦ i◦D ∈ T , and path(σ) is a path in S×C
from (s0, c0) to (s1, c1),

then T of S × C is complete w.r.t. trace pre-order.

The proof of this result is omitted due to the lack of the space and will appear
in the full version of this work.

This proposition indicates that a desired test suite can be generated by finding
a transition set R and a distinguishing sequence D such that R covers T and
D is a distinguishing sequence over states(R). In the next section, we will show
how to find R and D with a model checker.

76 L. Duan and J. Chen

5 Test Generation Using Model Checking Tools

Model checking tools such as SPIN [12], SMV [13], UPPAAL [14] are originally
designed to verify the correctness of design specifications. Recent years have
seen trends in applying model checking tools to assist the test generation pro-
cedures (see e.g. [2, 15–19]). When we use a model checker to verify a system
model against some required property, a counter-example will be returned if the
system model is not correct w.r.t. the property being checked. Making use of
this functionality of model checkers, we can characterize a desired test sequence
as a property. We use a model checker to verify the negation of this property,
called trap property, against a system specification. When this trap property is
violated, a counter-example returned by the model checker actually serves as a
desired test sequence. Following this line of research, we present here another ex-
ample of using model checkers to generate test sequences in conformance testing
with context.

To avoid constructing synchronous product of S and C, the specifications of
the IUT and its context are given to a model checker as a system specification.
The specification FSM of the IUT can be straightforwardly translated into any
formal specification language accepted model checking tools. For its context,
we do not restrict it to be given in a particular specification language or a
particular model, as long as it can be translated into a specification language
accepted by the adopted model checker. In the following, we use Spec to denote
the specification for the composition of the IUT and its context given in the
specification language of the chosen model checker.

We explain below how to make use of the specification FSM of an IUT and a
model checker (with Spec) to derive a test suite of the IUT and its context that
is complete with respect to trace pre-order.

5.1 Finding Transitions in R
As we explained in Section 4, we need to find a subset R of transitions in
S × C such that R covers T where T is the set of transitions in S × C. Since
the synchronous product FSM for the IUT and its context is not available, we
analyze S and derive R via a model checker. Fig. 1 shows an algorithm to use a
model checker to determine a transition set R such that R covers T .

A path ρ = (s1, s2, i1/o1) ◦ (s2, s3, i2/o2) ◦ . . . ◦ (sk, sk+1, ik/ok) in S is com-
posable if i1 ∈ I, ij ∈ X for 2 ≤ j ≤ k, and δ(sk+1, i) �= null for some i ∈ I.
According to the definition of synchronous product in Section 3, any transition
t = ((s, c), (s′, c′), i/o) ∈ T is constructed from some composable path. On the
other hand, not all composable paths in S can be used to define a transition in
S×C. Those that can be used to define a transition in S×C are called executable
paths. Recall that transitions of T in partition G(s, s′, i, o) share the same local
state s of the IUT in its starting state, the same local state s′ of the IUT in
its ending state, and the same input i and output o. Each executable path is
actually uniquely used to define all transitions in one of the partitions.

Now, as we want to derive a set R of transitions that contains at least one
(arbitrary) transition in each partition, we can use an executable path ρ in S to

An Approach to Testing with Embedded Context Using Model Checker 77

1: Input: S , Spec.
2: Output: a set V of pairs of transitions in S × C and input sequences in I∗, R.

3: Let Φ contains all composable paths in S ;
4: Let V = ∅;
5: for each path ρ in Φ do
6: define a formula φ to express the non-existence of a path in Spec which contains a

subpath which is equal to ρ when all its transitions from the context are ignored.
7: use model checker to verify formula φ in Spec;
8: if formula φ is violated then
9: add (t, σ) to V , where (i) t ∈ S × C is a transition derived by ρ and a path in

C defined by the counter-example returned from the model checker; and (ii)
σ is an input sequence in I∗ derived from the counter-example that defines a
path from (s0, c0) to the starting state of t;

10: end if
11: end for
12: Let R = {t | (t, σ) ∈ V };
13: return V and R;

Fig. 1. Algorithm 1. To find a transition set R

request the model checker to find an arbitrary transition of T that represents the
partition uniquely determined by ρ. This can be done as follows: Use temporal
logic formula to express such a property that there exists a subpath which is equal
to ρ when all its transitions from the context are ignored. Request the model
checker to verify the trap property, i.e. the negation of the above property. If ρ
is used to define a transition t in S × C, then the model checker will detect the
violation of the trap property, returning a path in Spec from which we can derive
a transition in the partition of ρ. Note that in addition to the transition in T ,
we also derive from the counter-example an input sequence in I∗ which defines
a path from (s0, c0) to the starting state of t. This input sequence will be used
later on to construct a test suite.

As statically we do not know which composable path is executable, we simply
ask the model checker to check all composable paths. If a composable path is
not executable, the model checker will prove the trap property. In this case, we
do not need to record any information.

Since S is finite and free from internal-port-cycles, the number of composable
paths in S is finite and the computation of Φ is in polynomial time. Consequently,
the time complexity of Algorithm 1 depends on that of the model checking
algorithms used by the model checker. See e.g. [13] for the discussions on the
complexity of model checking algorithms. In fact, optimization techniques of
model checking have been well studied in recent years to enhance its applicability.
Thus, the practicality of Algorithm 1 is endorsed.

According to Algorithm 1, we have the following result. Again, its proof is omit-
ted due to the lack of the space and will appear in the full version of this work.

Proposition 2. Let T be the set of transitions in S × C, and R the set of
transitions obtained from Algorithm 1. We have R covers T .

78 L. Duan and J. Chen

5.2 Finding a Distinguishing Sequence

Algorithms for finding a distinguishing sequence of an FSM are well-discussed
in the literature. See [11] for a good survey on this topic. However, finding a
distinguishing sequence of an FSM in context is much more complicated. Due to
the fact that a distinguishing sequence on S over states(R) must be calculated
with both the specification of the IUT and that of its context, while synchronous
product FSM of them is not available, we will apply model checker again. In
[20], the authors presented an approach to generating a distinguishing sequence
of an EFSM with UPPAAL model checker [14]. Here, we adopt the idea of this
approach to generate a distinguishing sequence on S over states(R).

1: Input: Spec, R.
2: Output: a distinguishing sequence on S over states(R).

3: for each state (s, c) in states(R) do
4: create a variant of Spec with (s, c) as its initial state;
5: end for
6: create a monitor process to synchronize all variants in the sense that a variant can

only accept an input if all others accept the same input simultaneously;
7: define a formula φ to express the property that there does not exist an input se-

quence such that the corresponding output sequences produced by any two variants
with different local states of S as their initial states are all different;

8: request model checker to verify φ in Spec;
9: if model check detects a violation then

10: Let D be the input sequence derived from the counter-example returned by the
model checker;

11: return D;
12: else
13: return “There does not exist any distinguishing sequence on S over states(R)”;
14: end if

Fig. 2. Algorithm 2. To find a distinguishing sequence over states(R)

Fig. 2 shows an algorithm for this purpose. Initially, for each state (s, c) ∈
states(R), we create a variant of S with s as its initial state and a variant of
C with c as its initial state. Then by making use of a special monitor process,
we request all the processes that represent these variants of S to synchronize
all their actions on accepting input from both the environment port and the
context port so that they will always accept the same input at the same time.
For any two variants whose local states of S in their initial states are different,
if the output sequences produced upon a same input sequence are all different,
then the input sequence can be used as a desired distinguishing sequence D on
S over states(R).

As we know, not every FSM has a distinguishing sequence, In our setting, we
cannot guarantee either their existence. However, as distinguishing sequences
very often exist in real-life examples, the distinguishing sequences in our setting
also exist in many application examples.

An Approach to Testing with Embedded Context Using Model Checker 79

The problem of finding a distinguishing sequence is PSPACE-hard by itself
[11]. Algorithm 2 reduces the problem to an application of model checking tools.
This allows us to benefit from important features that they provide, such as the
efficient partial order reduction and OBDD, and thus, reduce the actual cost for
the computation.

Finally, with V and D, a test suite T is obtained: For each (t, σ) ∈ V , add
both σ ◦ D and σ ◦ i ◦ D to T , where i is the input of t.

6 An Application

In this section, we use Inter-library Loan System (ILS) as a running example
and we use SPIN [21] as a supporting model checker to show how to use the
proposed technique to generate a complete test suite w.r.t. trace pre-order for
testing in context.

SPIN targets the efficient verification of a system model against the required
properties on-the-fly. Here, the system model is described in Promela [21] and
the required system properties are often expressed in Linear Temporal Logic
(LTL) formulas. As a matter of fact, a design specification expressed in many
other specification languages such as FSM and EFSM can be easily translated
into a Promela model.

A simplified ILS consists of two components: a borrowing library and a lending
library. A user at the borrowing library can search a book in the lending library.
When a book is found, the user can choose either to purchase the book or to issue
a loan request. The lending library will always grant the purchase of the book;
however, the allowance of the loan of the book depends both on the availability
of the required book and on the length of the waiting list. There are three cases:
i) if the book is available, the loan request will be granted; ii) if the book is
unavailable but the waiting list is not full, the lending library will ask the user if
he/she wants to make a reservation; and iii) if the waiting list is full, the lending
library will tell the user that the book is unavailable.

Suppose that the borrowing library is the IUT and the lending library is its con-
text. The specification S of the IUT has two ports: portUser and portContext.
Port portUser represents the interface of the borrowing library with the environ-
ment/tester, and port portContext represents the interface of the borrowing li-
brary with its context, the lending library. The semantics of service primitives used
in ILS can be inferred by their symbolic representations. For example, searchBook
is an input primitives at portUser to represent a user’s action of searching a book;
loanAccptd is an input primitives at portContext to represent that a user’s request
of a book loan is accepted.

Fig. 3 and Fig. 4 give the specification FSM S of the borrowing library and the
Promela model of the lending library C, respectively. Suppose that the number
of available books is 3, and the length of the waiting list for a book reserva-
tion cannot exceed 3. Let T be the set of transitions in S × C, and R ⊆ T .
To find R such that R covers T and to find a distinguishing sequence over
states(R), we need to translate FSM S and the behavior of a user of the ILS

80 L. Duan and J. Chen

into Promela processes. Thus, there are three processes in the Promela model
of ILS: User, Borrower and Lender, which represent the specifications of the
environment/tester, the borrowing library, and the lending library, respectively.
To establish the communication among these processes, there are four channels.

– fromUser: a channel through which Borrower receives inputs from User;
– ToUser: a channel through which Borrower sends outputs to User;
– fromLender: a channel through which Borrower receives inputs from

Lender;
– ToLender: a channel through which Borrower sends outputs to Lender;

searchBook/
<-, fwdSearch>

found/
<fwdFound, ->

notFound/
<fwdNotFound,->

searchBook/
<done,->loanReq/

<-, fwdReq>

loanAccptd/
<fwdLoanAccptd,->notAvail/

<fwdNotAvail,->

reservationQuery/
<fwdResQuery, ->

purchase/
<rejected, ->

no/<-, fwdNo>

yes/<-, fwdYes>

ackNo/
<fwdAckNo, ->

ackYes/
<fwdAckYes, ->

0s

1s

2s

3s

7s
4s8s

searchBook/
<done, ->

9s

purphase/
<-, fwdPurchase>

confirm/
<fwdConfirm,->

Fig. 3. Specification FSM of the borrowing library

Now we show how to find R. Let ρ = loanReq/〈−, fwdReq〉 ◦ notAvail/
〈fwdNotAvail,−〉. Clearly, ρ is a composable path in S. In order to use SPIN
to check whether ρ is executable, we need an LTL formula to express the negation
of the existence of a transition in S × C derived from ρ.

Since the sending actions are always executable, we focus on finding a path
to enable the receiving actions in ρ. Let the temporal logic variables be defined
as follows:

r = Borrower@s2

p = fromUser?[loanReq]

q = fromLender?[notAvail]

Here, r represents that process Borrower is in state s2; p represents that message
loanReq is received from channel fromUser; and q represents that message

An Approach to Testing with Embedded Context Using Model Checker 81

proctype Lender() {
bool book; /*initialization*/
int inStock =3; /*No. of available books*/
int waitingLst = 0;
int Max = 3; /*the maximum length of waiting list*/

if
:: book = true;
:: book = false;
fi;

ac0: /*label ac0 is associated with abstract state ac0*/
if
:: book == true → toLender ? fwdSearch

→ fromLender ! found;
:: book == false → toLender ? fwdSearch

→ fromLender ! notFound;
goto ac0;

fi;

ac1: /*label ac1 is associated with abstract state ac1*/
if
:: toLender ? fwdReq;
if
:: inStock > 0 → fromLender ! loanAccptd;

inStock–;
goto ac0;

:: inStock <= 0 and waitingLst >= Max
→ fromLender ! notAvail;
goto ac0;

:: inStock <= 0 and waitingLst < Max
→ fromLender ! reservationQuery;

fi;
:: toLender ? fwdPurchase → fromLender ! confirm;

goto ac0;
fi;

ac2: /*label ac2 is associated with abstract state ac2*/
if
:: toLender ? fwdYes → fromLender ! ackYes;

waitingLst++;
goto ac0;

:: toLender ? fwdNo → fromLender ! ackNo;
goto ac0;

fi;
}

Fig. 4. Promela model of the lending library

82 L. Duan and J. Chen

notAvail is received from channel fromLender. Then the desired trap LTL
formula can be expressed as

φ =!(<> (rUp)Uq).

When verifying the ILS Promela model against φ, we obtain the following
result from the returned counter-example:

σ = searchBook ◦ loanReq ◦ searchBook ◦ loanReq ◦ searchBook ◦
loanReq ◦ searchBook ◦ loanReq ◦ yes ◦ searchBook ◦ loanReq ◦ yes ◦
searchBook ◦ loanReq ◦ yes ◦ searchBook

t = ((s2, c1,2), (s0, c0,4), loanReq/〈−, fwdReq〉 ◦ notAvail/〈fwdNotAvail,−〉),
where c0,4 and c1,2 are concrete states split from abstract state ac0 and ac1 in
the situation when inStock = 0 and waitingLst = 3, respectively.

This result actually describes a possible scenario of having a transition in S × C
derived from ρ when all the books in the lending library are checked out and the
waiting list is full.

As shown in [11], the role of distinguishing sequences can actually be replaced
by their prefixes, one for each state. This very often helps us achieve shorter test
sequences. The definition of a distinguishing sequence over W can be extended
to prefix distinguishing sequences Di (for state si) straightforwardly. Following
Algorithm 2, prefix distinguishing sequence Di over states(R) can be found with
SPIN. For example, we have D0 = searchBook and D2 = D4 = searchBook ◦
purchase. Thus, test sequences for t are σ ◦ D2 and σ ◦ loanReq ◦ D0.

7 Related Work

There are various types of applications of using a model checker to generate tests.
Ammann et al. combined model checking with mutation analysis to generate test
cases [22]: after a specification model is mutated by applying mutation operators,
a model checker generates counter-examples to distinguish the mutant models
from the original specification model, and thus test cases are derived. Gargantini
and Heitmeyer presented a technique to construct test sequences upon a special
class of so-called Software Cost Reduction requirements, by using a model checker
[23]. In order to save memory from a huge predefined test suite, Tretmans and
de Vries [24] used model checker SPIN to generate tests during testing for non-
deterministic stateful systems. How to generate test cases according to some
data flow test selection criteria is discussed in [25]. In [20], Goltz et al. used a
model checker to generate a shortest distinguishing sequence of an EFSM. In
terms of applying model checking tools for test generation, we have added one
more example along this line of research, particularly for testing in context.

Along the approaches of testing in context, there are several possible ways to
interpret the context of an IUT. Petrenko et al. considered the situation where
the IUT is an embedded component and its communication with the environ-
ment has to be carried out through its context. For this case, they presented

An Approach to Testing with Embedded Context Using Model Checker 83

a framework of testing an embedded component in context [2, 16]. In particu-
lar, the problems of test executability and fault propagation are addressed in
the presence of the context. In [15, 17–19], different approaches are discussed for
solving the problem of translating internal tests derived for an embedded com-
ponent into external observable tests of the entire system. Different from their
test architecture, our work is applicable to testing an IUT that is associated with
an embedded component.

8 Conclusion and Final Remarks

In this paper, we presented a method of deriving a complete test suite w.r.t.
trace pre-order for testing the IUT with an embedded context, and provided a
way of implementing this method by making use of model check tools.

As an initial piece of work on testing in context with model checkers, our
focus has been put on the general method. Further improvements can be made
in terms of the size of the constructed test suite. For example, it is possible to
reduce the size of the generated test suite by constructing a test tree similar to
the one introduced in [3]; We can adopt those model checkers that can always
find shortest counter-examples in terms of the lengths so that shorter test se-
quences can be derived. Apart from the optimization issue, there are many other
directions to extend our current work.

– It remains interesting to discuss our test generation technique in more general
situations where both the IUT and its context have communications with
the environment.

– IUT may be nondeterministic: we would like to study how to extend our
results to nondeterministic testing in context.

– When the IUT is completely specified, it is not always possible to achieve
trace equivalence due to the interoperability of the IUT and its context. We
would like to discuss the condition on S and C such that trace equivalence
can be achieved.

– We have used distinguishing sequence for state identification. At expense of
its convenience for testing, distinguishing sequence does not always exist.
Although the use of characterization set usually results in much bigger test
suites, a characterization set is more likely to exist in an FSM with context.
Therefore, we would like to study on how to use model checking tools to
generate characterization set in our setting.

Acknowledgments. This work is supported by the Natural Sciences and En-
gineering Research Council of Canada under grant number RGPIN 209774.

References

1. Tretmans, J.: Conformance testing with labelled transition systems: Implementa-
tion relation and test generation. Computer Networks and ISDN Systems 29, 49–79
(1996)

84 L. Duan and J. Chen

2. Petrenko, A., Yevtushenko, N., von Bochmann, G., Dssouli, R.: Testing in con-
text: framework and test derivation. Computer Communications 19(14), 1236–1249
(1996)

3. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. SE-4(3), 178–187 (1978)

4. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works and ISDN Systems 4(15), 285–297 (1988)

5. Hennie, F.: Fault detecting experiments for sequential circuits. In: Proc. of 5th
Ann. Symp. Switching Circuit Theory and Logical Design, pp. 95–110 (1964)

6. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

7. Hierons, R.M., Ural, H.: UIO sequence based checking sequences for distributed
test architectures. Information and Software Technology 45(12), 793–803 (2003)

8. Chen, J., Hierons, R.M., Ural, H., Yenigun, H.: Eliminating redundant tests in
a checking sequence. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS,
vol. 3502, pp. 146–158. Springer, Heidelberg (2005)

9. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans.
Computers 19(6), 551–558 (1970)

10. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46(1), 93–99 (1997)

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
— a survey. Proceedings of The IEEE 84(8), 1090–1123 (1996)

12. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

14. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a
tool suite for automatic verification of real-time systems. In: Proc. of the DI-
MACS/SYCON workshop on Hybrid systems III: verification and control: veri-
fication and control, pp. 232–243 (1995)

15. Lima, L.P., Cavalli, A.R.: A progmatic approach to generating test sequences for
embedded systems. In: Proc. of 10th International Workshop on Testing of Com-
municating Systems, pp. 125–140 (1997)

16. Petrenko, A., Yevtushenko, N., von Bochmann, G.: Fault models for testing in
context. In: Proc. of Internation Conference on Formal Techniques for Networked
and Distributed Systems, pp. 125–140 (1996)

17. Petrenko, A., Yevtushenko, N.: Testing faults in embedded components. In: Proc. of
10th International Workshop on Testing of Communicating Systems, pp. 272–287
(1997)

18. El-Fakih, K., Petrenko, A., Yevtushenko, N.: FSM test translation through context.
In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964,
pp. 245–258. Springer, Heidelberg (2006)

19. El-Fakih, K., Yevtushenko, N.: Fault propagation by equation solving. In: de
Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 185–198.
Springer, Heidelberg (2004)

20. Robinson-Mallett, C., Liggesmeyer, P., Mcke, T., Goltz, U.: Generating optimal
distinguishing sequences with a model checker. ACM SIGSOFT Software Engi-
neering Notes 30(4), 1–7 (2005)

21. Holzmann, G.: The Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs (1991)

An Approach to Testing with Embedded Context Using Model Checker 85

22. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate test
from specifications. In: Proc. of 2nd IEEE International Conference on Formal
Engineering Methods (ICFEM 1998), pp. 46–54 (1998)

23. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specifications. ACM SIGSOFT Software Engineering Notes 24(6), 146–162
(1999)

24. de Vries, R., Tretmans, J.: On-the-fly conformance testing using Spin. International
Journal on Software Tools for Technology Transfer 2(4), 382–393 (2000)

25. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model checking.
In: Proc. of IEEE ICSE 2003, pp. 232–242 (2003)

Requirements Coverage as an Adequacy

Measure for Conformance Testing�

Ajitha Rajan1, Michael Whalen2, Matt Staats1, and Mats P.E. Heimdahl1

1 University of Minnesota
arajan@cs.umn.edu, staats@cs.umn.edu, heimdahl@cs.umn.edu

2 Rockwell Collins Inc.
mwwhalen@rockwellcollins.com

Abstract. Conformance testing in model-based development refers to
the testing activity that verifies whether the code generated (manually or
automatically) from the model is behaviorally equivalent to the model.
Presently the adequacy of conformance testing is inferred by measuring
structural coverage achieved over the model. We hypothesize that ade-
quacy metrics for conformance testing should consider structural coverage
over the requirements either in place of or in addition to structural cover-
age over the model. Measuring structural coverage over the requirements
gives a notion of how well the conformance tests exercise the required
behavior of the system.

We conducted an experiment to investigate the hypothesis stating
structural coverage over formal requirements is more effective than struc-
tural coverage over the model as an adequacy measure for conformance
testing. We found that the hypothesis was rejected at 5% statistical sig-
nificance on three of the four case examples in our experiment. Never-
theless, we found that the tests providing requirements coverage found
several faults that remained undetected by tests providing model cov-
erage. We thus formed a second hypothesis stating that complementing
model coverage with requirements coverage will prove more effective as
an adequacy measure than solely using model coverage for conformance
testing. In our experiment, we found test suites providing both require-
ments coverage and model coverage to be more effective at finding faults
than test suites providing model coverage alone, at 5% statistical signif-
icance. Based on our results, we believe existing adequacy measures for
conformance testing that only consider model coverage can be strength-
ened by combining them with rigorous requirements coverage metrics.

1 Introduction

In critical avionics applications, the validation and verification phase (V&V) is
particularly costly and consumes a disproportionably large share of the devel-
opment resources. Thus, if the process of deriving test cases for V&V can be
� This work has been partially supported by NASA Ames Research Center Cooperative

Agreement NNA06CB21A, NASA IV&V Facility Contract NNG-05CB16C, and the
L-3 Titan Group.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 86–104, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Requirements Coverage as an Adequacy Measure for Conformance Testing 87

automated to provide test suites that satisfy the most stringent standards (such
as DO-178B in civil avionics [20]), dramatic time and cost savings can be re-
alized. The current trend towards model-based development is one attempt to
address this problem. In model-based software development, the traditional test-
ing process is split into two distinct activities: one activity that tests the model
to validate that it accurately captures the customers’ high-level requirements,
and another testing activity that verifies whether the code generated (manually
or automatically) from the model is behaviorally equivalent to (or conforms to)
the model. (Note that by “model”, we are referring specifically to a high level
formal model written in a language such as Simulink or Lustre. Throughout
this paper, we refer to this simply as a “model”.) In this paper, we focus on
the second testing activity—verification through conformance testing. There are
currently several tools, such as model checkers, that provide the capability to
automatically generate conformance tests [19, 7] from formal models. In this pa-
per, we examine the effectiveness of metrics used in measuring the adequacy of
the generated conformance tests.

For critical avionics software, DO-178B necessitates test cases used in verifi-
cation to achieve requirements coverage in addition to structural coverage over
the code. However, there is no direct and objective measure of requirements
coverage, and adequacy of tests is instead inferred by examining structural cov-
erage achieved over the model. The Modified Condition and Decision Coverage
(MC/DC) used when testing highly critical software [20] in the avionics industry
has been a natural choice to measure structural coverage for the most critical
models. In our work [21], however, we have defined coverage metrics that pro-
vide direct and objective measures of how well a test suite exercises a set of
high-level formal software requirements. We examined using requirements cov-
erage metrics, in particular the Unique First Cause (UFC) coverage metric, to
measure adequacy of tests used in model validation (or black-box testing) and
found them to be useful. To save time and effort, we would like to re-use val-
idation tests providing requirements coverage for verification of code through
conformance testing as well. This paper examines the suitability of using tests
providing requirements UFC coverage for conformance testing as opposed to
tests providing MC/DC over the model.

We believe requirements coverage will be useful as an adequacy measure for
conformance testing for several reasons. First, measuring structural coverage
over the requirements gives a direct assessment of how well the conformance
tests exercise the required behavior of the system. Second, if a model is miss-
ing functionality, measuring structural coverage over the model will not expose
such defects of omission. Third, obligations for requirements coverage describe
satisfying scenarios (paths) in the model as opposed to satisfying states defined
by common model coverage obligations (such as MC/DC). We believe coverage
obligations that define satisfying paths will necessitate longer and more effective
test cases than those defining satisfying states in the model. Finally, we found
in [16] that structural coverage metrics over the model, in particular MC/DC, are
sensitive to the structure of the model used in coverage measurement. Therefore,

88 A. Rajan et al.

these metrics can be easily rendered inefficient by (purposely or inadvertently)
restructuring the model to make it easier to achieve the desired coverage.

For these reasons, we believe that requirements coverage will serve as a
stronger adequacy measure than model coverage in measuring adequacy of con-
formance test suites. More specifically, we investigate the following hypothesis
in this paper:

Hypothesis 1 (H1). Conformance tests providing requirements UFC coverage
are more effective at fault finding than conformance tests providing MC/DC
over the model.

Weevaluated this hypothesis on four industrial examples from the civil avionics do-
main. The requirements for these systems are formalized as Linear Temporal Logic
(LTL) [5] properties. The systems were modeled in the Simulink notation [12]. Us-
ing the Simulink models, we created implementations that we used as the basis
for the generation of large sets of mutants by randomly seeding faults. We gener-
ate numerous test suites to provide 100% achievable UFC coverage over the LTL
properties (the formal requirements), and numerous test suites to provide 100%
achievable MC/DC over the model. We assessed the effectiveness of the different
test suites by measuring their fault finding capability, i.e., running them over the
sets of mutants and measuring the number of faults detected.

In our experiment we found that Hypothesis 1 was rejected on three of the
four examples at the 5% statistical significance level. This result was somewhat
disappointing since we believed that the requirements coverage would be effec-
tive as a conformance testing measure. The astute reader might point out that
the result might not be surprising since the effectiveness of the requirements-
based tests providing UFC coverage heavily depends on the ‘goodness’ of the
requirements set; in other words, a poor set of requirements leads to poor tests.
In this case, however, we worked with case examples with very good sets of re-
quirements and we had expected better results. Nevertheless, we found that the
tests providing requirements UFC coverage found several faults that remained
undetected by tests providing MC/DC over the model. We thus formed a second
hypothesis stating that complementing model coverage with requirements cov-
erage will prove more effective as an adequacy measure than solely using model
coverage for conformance testing. To investigate this, we formulated and tested
the following hypothesis:

Hypothesis 2 (H2). Conformance tests providing requirements UFC coverage
in addition to MC/DC over the model are more effective at fault finding than
conformance tests providing only MC/DC over the model.

In our second set of experiments, the combined test suites were significantly
more effective than MC/DC test suites on three of the four case examples (at the
5% statistical significance level). For these examples, UFC suites found several
faults not revealed by the MC/DC suites making the combination of UFC and
MC/DC more effective than MC/DC alone. The relative improvement was in
the range of 4.3% − 10.8% on these examples. We strongly believe that for

Requirements Coverage as an Adequacy Measure for Conformance Testing 89

the case example that did not support Hypothesis 2, the MC/DC suite found
all possible faults, making improvement with the combined suites impossible.
Based on our results, we believe that existing adequacy measures for conformance
testing based solely on structural coverage over the model (such as MC/DC) can
be strengthened by combining them with requirements coverage metrics such as
UFC. It is worth noting that Briand et.al. found similar results in their study [3],
though in the context of state-based testing for complex component models in
object-oriented software. Combining a state-based testing technique for classes
or class clusters modeled with statecharts [8], with a black-box testing technique,
category partition testing, proved significantly more effective in fault detection.
We recommend future measures of conformance testing adequacy to consider
both requirements and model coverage either by combining existing metrics,
such as MC/DC and UFC, or by defining new metrics that account for both.

The remainder of the paper is organized as follows. Section 2 introduces our
experimental setup and the case examples used in our investigation. Results and
statistical analysis are presented in Section 3. Finally in Sections 4 and 5, we
analyze and discuss the implications of our results, and point to future directions.

2 Experiment

We use four industrial systems in our experiment: two models from a display
window manager for an air-transport class aircraft (DWM 1, DWM 2), and two
models representing flight guidance mode logic for business and regional jet
class aircrafts (Vertmax Batch and Latctl Batch). All four systems were viewed
to have good sets of requirements as judged by the developer of the system. We
conducted the experiments for each case example using the steps outlined below
(elaborated in later sections):

1. Generate and reduce test suites to provide requirements UFC cov-
erage: We generated a test suite to provide UFC coverage over the formalized
LTL requirements. This test suite was näıvely generated, one test case for every
UFC obligation, and thus highly redundant. We reduced the test suite randomly
while maintaining UFC coverage over the requirements. We generated three such
randomly reduced test suites.

2. Generate and reduce test suites to provide MC/DC over the model:
We näıvely generated a test suite to provide MC/DC over the model. We then
randomly reduced the test suite to maintain MC/DC over the model. We gen-
erated three such reduced test suites.

3. Combined test suites that provide MC/DC + requirements UFC:
Among the reduced MC/DC suites from the previous step, we selected the most
effective MC/DC test suite based on their fault finding ability. We merge this
test suite with each of the reduced UFC test suites from the first step. The
combined suites thus provide both MC/DC over the model and UFC coverage
over the requirements.

90 A. Rajan et al.

4. Generate mutants: We randomly seeded faults in the correct implemen-
tation and generated three sets of 200 mutants using the method outlined in
Section 2.3.

5. Assess and compare fault finding: We run each of the test suites from
steps 1, 2 and 3 (that provide requirements UFC coverage, MC/DC over the
model, and MC/DC + requirements UFC coverage respectively) against each
set of mutants and the model. Note that the model serves as the oracle imple-
mentation in conformance testing. We say that a mutant is killed (or detected)
by a test suite if any of the test cases in the suite results in different output
values between the model and the mutant. We recorded the number of mutants
killed by each test suite and computed the fault finding ability as the percentage
of mutants killed to the total number of mutants seeded.

2.1 Case Examples

In our experiment, we use four industrial systems. All four systems were modeled
using the Simulink notation from Mathworks Inc.

Display Window Manager Models (DWM 1 and DWM 2): The Display
Window Manager models, DWM 1, and DWM 2, represent 2 of the 5 major
subsystems of the Display Window Manager (DWM) of an air transport-level
commercial displays system. The DWM acts as a ‘switchboard’ for the system
and has several responsibilities related to routing information to the displays
and manages the location of two cursors that can be used to control applications
by the pilot and copilot.

Flight Guidance System: A Flight Guidance System is a component of the
overall Flight Control System (FCS) in a commercial aircraft. It compares the
measured state of an aircraft (position, speed, and altitude) to the desired state
and generates pitch and roll-guidance commands to minimize the difference be-
tween the measured and desired state. The FGS consists of the mode logic, which
determines which lateral and vertical modes of operation are active and armed
at any given time, and the flight control laws that accept information about
the aircraft’s current and desired state and compute the pitch and roll guidance
commands. The two FGS models in this paper focus on the mode logic of the
FGS. The Vertmax Batch and Latctl Batch models describe the vertical and
lateral mode logic for the flight guidance system.

2.2 Test Suite Generation and Reduction

We generated test suites to provide UFC coverage over formal LTL requirements
and to provide MC/DC over the model. The approach to generate and reduce
the test suites for the two different coverage measures is detailed below. Ad-
ditionally, we merge the reduced test suites for the two coverage measures to
create combined test suites that provide UFC coverage over the requirements in
addition to MC/DC over the model.

Requirements Coverage as an Adequacy Measure for Conformance Testing 91

UFC Coverage over Requirements: The requirements coverage metric used
in this paper is the Unique First Cause (UFC) coverage defined in [21].

The UFC metric is adapted from the Modified Condition/Decision Coverage
(MC/DC) criterion [4, 9] defined over source code that defines satisfying states in
the implementation. Since requirements captured as LTL properties define paths
rather than states, we broadened our view of structural coverage to accommodate
satisfying paths rather than satisfying states. We defined these satisfying test
paths by extending the constraints for state-based MC/DC to include temporal
operators. A test suite is said to satisfy UFC coverage over a set of LTL formulae
if executing the test cases in the test suite will guarantee that:

– Every basic condition in a formula has taken on all possible outcomes at
least once

– Each basic condition has been shown to independently affect the formula’s
outcome.

We defined independence in terms of the shortest satisfying path for the formula.
Thus, if we have a formula A and a path π, an atomic condition α in A is the
unique first cause if, in the first state along π in which A is satisfied, it is satisfied
because of atomic condition α. The formal definition for UFC and the obligations
for LTL temporal operators was presented in [21].

The notion of requirements UFC coverage used in this paper is related to
work assessing the completeness and correctness of formulae in temporal logics,
in particular, vacuity checking of temporal logic formulas [2, 10, 15]. The focus
of this paper, however, is on the application and usefulness of requirements cov-
erage to measure adequacy of conformance testing, and not on the completeness
of requirements. We are not aware of studies that investigated applicability of
requirements coverage in this context.

Several research efforts have developed techniques for automatic generation of
tests from formal models using model checkers as test case generation tools [17,
18, 7]. One such technique operates by formulating a test criterion as a verifi-
cation condition for the model checker. The obligations for requirements UFC
coverage are given as trap properties (by negating the obligations) to the model
checker along with the formal model of the system, and the model checker re-
turns counter examples that constitute a test suite for UFC coverage over the
LTL requirements.

A test suite thus generated will be highly redundant, as a single test case will
often satisfy several UFC obligations. We therefore reduce this test suite using a
greedy approach. We randomly select a test case from the test suite, check how
many UFC obligations are satisfied and add it to a reduced test set. Next, we
randomly pick another test case from the suite and check whether any additional
UFC obligations were satisfied. If so, we add the test case to the reduced test
set. This process continues till we have exhausted all the test cases in the test
suite. We now have a randomly reduced test suite that maintains UFC coverage
over the LTL requirements. We generate three such reduced UFC test suites for
each case example in our experiment to eliminate the possibility of skewing our
results with an outlier (an extremely good or bad reduced test suite).

92 A. Rajan et al.

MC/DC over model: The full test suite to provide MC/DC used in this
experiment is the same one used in previous work [16]. We used the test suite
that provides MC/DC over the inlined model rather than the non-inlined model
as it is more rigorous and effective. We thus compare the requirements UFC
coverage against a rigorous notion of MC/DC. The test suite was automatically
generated using the NuSMV [13] model checker to provide MC/DC over the
model. The full test suite was näıvely generated, with a separate test case for
every construct we need to cover in the model. This straightforward method
of generation results in highly redundant test suites, as with UFC test suite
generation. Thus, the size of the complete test suite can typically be reduced
while preserving coverage.

The approach to reduce the test suite is similar to that used for UFC coverage.
As before, we generate three such reduced test suites to decrease the chances of
skewing our results with an outlier (very good or very bad reduced test suite).

Requirements UFC Coverage + MC/DC over model: To generate test
suites providing both requirements UFC coverage and MC/DC over the model,
we simply merge the test suite providing UFC with the test suite providing
MC/DC. As mentioned previously, we generated three reduced MC/DC suites
and three reduced UFC suites. It is thus possible to create nine different com-
bined suites, by merging each of the three reduced MC/DC suites with each of
the three reduced UFC suites. Using all nine suites in our experiment, however,
would have been very time consuming. To reduce the combinations, we instead
elected to use only the best reduced MC/DC suite (with respect to fault finding
among the reduced MC/DC suites) for creating the combined test suites. We
thus merge the best MC/DC suite with each of the three reduced UFC suites to
create only three combined suites. Note that choosing the best MC/DC implies
that the combined suites must improve the fault finding of the best MC/DC
suite to support Hypothesis 2.

2.3 Mutant Generation

To create mutants or faulty implementations, we built a fault seeding tool that
can randomly inject faults into the implementation. Each mutant is created by
introducing a single fault into a correct implementation by mutating an operator
or variable.

The fault seeding tool is capable of seeding faults from different classes. We
seeded the following classes of faults:

Arithmetic: Changes an arithmetic operator (+, -, /, *, mod, exp).
Relational: Changes a relational operator (=, �=, <, >,≤,≥).
Boolean: Changes a boolean operator (∨,∧, XOR).
Negation: Introduces the boolean ¬ operator.
Delay: Introduces the delay operator on a variable reference (that is, use the

stored value of the variable from the previous computational cycle rather
than the newly computed value).

Requirements Coverage as an Adequacy Measure for Conformance Testing 93

Constant: Changes a constant expression by adding or subtracting 1 from int
and real constants, or by negating boolean constants.

Variable Replacement: Substitutes a variable occurring in an equation with
another variable of the same type.

To seed a fault from a certain class, the tool first randomly picks one expression
among all possible expressions of that kind in the implementation. It then ran-
domly determines how to change the operator. For instance to seed an arithmetic
mutation, we first randomly pick one expression from all possible arithmetic ex-
pressions to mutate, say we pick the expression ‘a + b’; we then randomly
determine if the arithmetic operator ‘+’ should be replaced with ‘-’ or ‘*’ or
‘/’ and create the arithmetic mutant accordingly. Our fault seeding tool ensures
that no duplicate faults are seeded.

In our experiment, we generated mutants so that the ‘fault ratio’ for each fault
class is uniform. The term fault ratio refers to the number of mutants generated
for a specific fault class versus the total number of mutants possible for that
fault class. For example, assume an implementation consists of R Relational
operators and B Boolean operators. Thus there are R possible Relational faults
and B possible Boolean faults. For uniform fault ratio, we would seed x relational
faults and y boolean faults in the implementation so that x/R = y/B.

We generated three sets of 200 mutants for each case example. We generated
multiple mutant sets for each example to reduce potential bias in our results from
a mutant set that may have very hard (or easy) faults to detect. Our mutant
generator does not guarantee that a mutant will be semantically different from
the original implementation. Nevertheless, this weakness in mutant generation
does not affect our results, since we are investigating the relative fault finding
of test suites rather than the absolute fault finding.

The fault finding effectiveness of a test suite is measured as the number of
mutants detected (or ‘killed’) to the total number of mutants created. We say
that a mutant is detected by a test suite when the test suite results in differ-
ent observed values between the mutant and the oracle implementation. The
system model serves as the oracle implementation in conformance testing. We
only observe the output values of the model and mutants for comparison.
We do not use internal state information, as internal state information between
the model and implementation may differ and can therefore not be compared
directly. Additionally, internal state information of the system under test may
not be available during real-world tests and it is therefore preferable to perform
the comparison with only output values.

3 Experimental Results

For each case example described in Section 2.1, we generated three reduced UFC
test suites, three reduced MC/DC test suites, three combined UFC + MC/DC
test suites and three sets of mutants. As mentioned earlier the combined suites
are created by merging the best reduced MC/DC suite with each of the three
reduced UFC suites. For this reason we compare the fault finding ability of the

94 A. Rajan et al.

combined suites only against the best MC/DC suite rather than all the reduced
MC/DC suites. We ran every test suite against every set of mutants, and recorded
the percentage of mutants caught. For each case example, this yielded nine ob-
servations each for MC/DC, UFC and the combined test suites. We average the
percentage of mutants caught across the mutant sets for each case example and
each kind of test suite. This yields three averages, one each for MC/DC, UFC,
and combined test suites as summarized in Table 1. Also, for each case example
we identify the most effective MC/DC suite (among the generated three reduced
MC/DC suites) and calculate average fault finding across the mutant sets. The
‘Best MC/DC’ column in the table represents these averaged observations. Ta-
ble 1 also gives the relative improvement in average fault finding of UFC suites
over MC/DC test suites, and combined suites over the best MC/DC suite. Note
that some of the numbers in the relative improvement column in Table 1 are
negative. This implies that the test suite did not yield an improvement, and
instead did worse than the MC/DC test suite at fault finding. For instance, for
the DWM 1 model the MC/DC test suites provide an average fault finding of
84.6% and the UFC suites provide an average fault finding of 82.7%, and thus
the relative improvement in fault finding for UFC suites is negative (= -2.2%)
with respect to MC/DC suites. Conversely, for the DWM 1 system, the com-
bined suites provide better fault finding (an average of 91.5%) than the best
MC/DC suite (85.8%), giving a positive relative improvement of 6.6%.

The complete set of 27 fault finding observations for each case example is
presented in Table 2. Note that in the table, M1, M2, M3 denote the three mu-
tant sets; MCDC 1, MCDC 2, MCDC 3 refer to the reduced MC/DC suites;
UFC 1, UFC 2, UFC 3 to reduced UFC suites; and C 1, C 2, C 3 to the com-
bined UFC and MC/DC suites. The best MC/DC suite (used to create combined
suites) can be identified by comparing the fault finding of MCDC 1, MCDC 2,
and MCDC 3 across the mutant sets. Thus from the results in Table 2 we find for
the DWM 1 system, the best MC/DC test suite is MCDC 3. For DWM 2 and
Vertmax Batch systems, all three reduced MC/DC suites are equally effective so
any of them can be used for creating the combined suites. We randomly selected
MCDC 1 for DWM 2 and MCDC 3 for Vertmax Batch system. Finally, for the
Latctl Batch system, MCDC 1 is the most effective.

From the results in Tables 1 and 2, it is evident that for all case examples,
except the Latctl Batch system, MC/DC test suites outperform the UFC suites

Table 1. Average percentage of mutants caught by test suites and relative improvement
over MC/DC

Avg. Avg. Relative Best Avg. Relative
MC/DC UFC Improv. MC/DC Combined Improv.

DWM 1 84.6% 82.7% -2.2% 85.8% 91.5% 6.6 %

DWM 2 90.6% 16.7% -81.6% 90.6% 90.6% 0.0%

Latctl Batch 85.1% 88.7% 4.2% 85.4% 94.6% 10.8%

Vertmax Batch 86.0% 68.6% -20.2% 86.0% 89.7% 4.3%

Requirements Coverage as an Adequacy Measure for Conformance Testing 95

Table 2. Complete results for all case examples

DWM 1

MCDC 1 MCDC 2 MCDC 3 UFC 1 UFC 2 UFC 3 C 1 C 2 C 3

M1 82.7% 81.2% 84.3% 79.2% 79.7% 76.1% 88.3% 89.3% 88.8%

M2 83.8% 83.8% 86.3% 83.8% 82.7% 81.2% 91.4% 91.9% 91.4%

M3 86.3% 86.3% 86.8% 87.3% 87.8% 86.8% 93.9% 94.4% 94.4%

TS Size 73 76 77 463 469 468 540 546 545

DWM 2

MCDC 1 MCDC 2 MCDC 3 UFC 1 UFC 2 UFC 3 C 1 C 2 C 3

M1 91.4% 91.4% 91.4% 17.2% 15.2% 16.7% 91.4% 91.4% 91.4%

M2 91.4% 91.4% 91.4% 16.7% 14.6% 16.7% 91.4% 91.4% 91.4%

M3 88.9% 88.9% 88.9% 18.7% 16.2% 18.7% 88.9% 88.9% 88.9%

TS Size 452 452 448 33 32 31 485 484 483

Latctl Batch

MCDC 1 MCDC 2 MCDC 3 UFC 1 UFC 2 UFC 3 C 1 C 2 C 3

M1 85.2% 84.2% 84.7% 89.3% 87.8% 89.8% 94.4% 92.9% 91.8%

M2 85.7% 85.7% 85.2% 89.3% 89.3% 89.8% 96.4% 95.9% 95.9%

M3 85.2% 84.7% 85.2% 88.8% 85.2% 88.8% 94.9% 93.9% 94.9%

TS Size 73 71 73 50 49 53 123 122 126

Vertmax Batch

MCDC 1 MCDC 2 MCDC 3 UFC 1 UFC 2 UFC 3 C 1 C 2 C 3

M1 83.8% 83.8% 83.8% 67.5% 69.5% 66.0% 88.8% 88.8% 88.8%

M2 81.3% 81.3% 81.3% 71.1% 71.1% 71.6% 91.9% 90.4% 90.4%

M3 88.9% 88.9% 88.9% 64.5% 66.0% 70.1% 87.3% 86.3% 88.3%

TS Size 301 299 297 89 79 88 386 376 385

in fault finding. The degree to which MC/DC suites are better, however, varies
by a vast range. The maximum difference is on DWM 2, where MC/DC suites
provide an average fault finding of 90.6% in contrast to 16.7% provided by UFC
suites. The minimum difference is on DWM 1 where MC/DC provides an average
fault finding of 84.6% versus 82.7% provided by UFC suites. The combined suites
on the other hand outperform the MC/DC suites. The relative improvement
provided by the combined suites however spans a much smaller range (0 - 10.8%).
In other words, the number of different faults revealed by the UFC suites as
compared to the best MC/DC suite is in the range of 0 − 10.8% of the mutants
seeded. The combined suites provide better fault finding than the best MC/DC
suite on three of the four case examples. On the DWM 2 system the combined
suites yield no improvement. A detailed discussion of the implication of these
results is presented in Section 4.

3.1 Statistical Analyses

In this section, we statistically analyze the results in Tables 1 and 2 to determine
if the hypotheses H1 and H2, stated previously in Section 1, are supported.

To evaluate H1 and H2, we formulate our respective null hypotheses H01 and
H02 as follows:

96 A. Rajan et al.

H01: A test suite generated to provide requirements UFC coverage will find
the same number of faults as a test suite generated to provide MC/DC
coverage over the model.

H02: A test suite generated to provide both requirements UFC coverage and
MC/DC over the model will reveal the same number of faults as a test
suite generated to provide only MC/DC over the model.

To accept H2, we must reject H02. Rejecting H02 implies that the data for the
combined test suite and MC/DC suite come from different populations. In other
words, this implies that either the combined suites have more fault finding than the
MC/DC suites or vice versa. However, the combined suite includes the MC/DC
suite and can therefore never have lesser fault finding than the MC/DC suite. This
implies that H2 is supported when H02 is rejected. On the other hand, rejecting
H01 does not necessarily imply H1 is supported, as this implies that the UFC
suites have different fault finding ability than the MC/DC suites, not necessarily
better fault finding ability. To accept H1 after rejecting H01, we examine the data
in the table and determine if the UFC suites have greater fault finding than the
MC/DC suite. If so, we accept H1. If the data indicates that UFC suites instead
have lesser fault finding than the MC/DC suites, we reject H1.

Our experimental observations are drawn from an unknown distribution, and
we therefore cannot reasonably fit our data to a theoretical probability distribu-
tion. To evaluate H01 and H02 without any assumptions on the distribution of
our data, we use the permutation test, a non-parametric test with no distribu-
tion assumptions. When performing a permutation test, a reference distribution
is obtained by calculating all possible permutations of the observations [6, 11].
To perform the permutation test, we restate our null hypotheses as:

H01: The data points for percentage of mutants caught using the UFC and
MC/DC test suites come from the same population.

H02: The data points for percentage of mutants caught using the MC/DC and
combined UFC + MC/DC test suites come from the same population.

We evaluate the two hypotheses for each of the case examples. The procedure
for permutation test of each hypothesis is as follows. Data is partitioned into
two groups: A and B. Null hypothesis states that data in groups A and B come
from the same population. We calculate the test statistic S as the absolute value
of the difference in the means of group A and B:

S = | A − B |

We calculate Number of Permutations as the number of ways of grouping
all the observations in A and B into two sets. We then let COUNT equal the
number of permutations of A and B in which the test statistic is greater than
S. Finally, P − V alue is calculated as:

P − V alue = COUNT / Number of Permutations

For each case example, if P − V alue is less than the α value of 0.05 then we
reject the null hypothesis with significance level α.

Requirements Coverage as an Adequacy Measure for Conformance Testing 97

The null hypotheses H01 and H02 are evaluated using different groups of data.
For H01, data for each case example in Table 2 is partitioned into two groups
with nine observations each: % of faults caught by UFC test suites (group A
– columns UFC 1, UFC 2, UFC 3 in the table), and % of faults caught by
MC/DC test suites (group B – columns MCDC 1, MCDC 2, MCDC 3). We
calculate the Number of Permutations as:

Number of Permutations =
(

18
9

)
= 48620

For H02, data for each case example in Table 2 is partitioned into two groups, one
with nine observations and the other with three observations: % of faults caught
by combined UFC+MC/DC test suites (group A – columns C 1, C 2, C 3),
and % of faults caught by the best MC/DC suite (group B – MCDC 1 column
for DWM 2 and Latctl Batch systems, and MCDC 3 column for DWM 1 and
Vertmax Batch systems). We calculate the Number of Permutations as:

Number of Permutations =
(

12
9

)
= 220

We then determine the p-value for each hypothesis using the procedure described
previously. Table 3 lists the p-values for both null hypotheses (H01 and H02) and
states if the corresponding original hypotheses (H1 and H2) are supported for
each case example. As mentioned earlier, for each case example, H1 is supported
if H01 is rejected with significance level α = 0.05 and all the UFC suites (columns
UFC 1, UFC 2, UFC 3 in Table 2) have better fault finding than the MCDC
suites (columns MCDC 1, MCDC 2, MCDC 3), and H2 is supported if we
reject H02.

Given the p-values in Table 3 and the fault finding data in Table 2 we examine
why the original hypotheses (H1 and H2) are supported/rejected for each case ex-
ample. For the DWM 1 system, H01 is accepted (since p-value is greater than α
value), and we therefore reject H1. For the other three systems, H01 is rejected but
the UFC suites outperform the MC/DC suites only on the Latctl Batch system.
For the DWM 2 and Vertmax Batch systems, MC/DC suites always outperform
the UFC test suites. Thus, H1 is supported on the Latctl Batch system and re-
jected on the DWM 2 and Vertmax Batch systems. On the other hand, H02 is
rejected (p-value less than the α value) on all but the DWM 2 system. This im-
plies that H2 is supported on all except the DWM 2 system. Thus, we find that

Table 3. Hypotheses Evaluation for different case examples

P-Value Result

H01 H02 H1 H2

DWM 1 0.24 0.004 Unsupported Supported

DWM 2 0.00004 1.0 Unsupported Unsupported

Latctl Batch 0.0002 0.004 Supported Supported

Vertmax Batch 0.00004 0.027 Unsupported Supported

98 A. Rajan et al.

with statistical significance level α = 0.05 hypothesis H1 is supported only on one
case example, and hypothesis H2 is supported on three of the four case examples.

3.2 Threats to Validity

While our results are statistically significant, they are derived from a small set of
examples, which poses a threat to the generalization of the results. Nevertheless,
we believe that the examples in our experiment are highly representative and
our results are generalizable to systems within the same domain.

Our fault seeding method seeds one fault per mutant. In practice, implemen-
tations are likely to have more than one fault. However, previous studies have
shown that mutation testing in which one fault is seeded per mutant draws valid
conclusions of fault finding ability [1].

Additionally, all fault seeding methods have an inherent weakness. It is dif-
ficult to determine the exact fault classes and ensure that seeded faults are
representative of faults that occur in practical situations. In our experiment, we
assume a uniform ratio of faults across fault classes. This may not reflect the
fault distribution in practice. Finally, our fault seeding method does not ensure
that seeded faults result in mutants that are semantically different from the or-
acle implementation. Ideally, we would eliminate mutants that are semantically
equivalent, however, identifying such mutants is infeasible in practice.

4 Discussion

In this section we analyze and discuss the implications of the results in Tables 1
and 2. We present the discussion in the context of Hypotheses 1 and 2 stated in
Section 1.

4.1 Analysis - Hypothesis 1

As seen from Table 1, on all but one of the industrial systems, test suites generated
for requirements UFC coverage have lower fault finding than test suites providing
MC/DC over the system model. Statistical analysis revealed that hypothesis 1
stating “test suites providing requirements UFC coverage have better fault finding
than test suites providing MC/DC over the model” was supported only on the
Latctl Batch system and rejected on all the other systems at the 5% significance
level. We believe this may be because of one or both of the following reasons, (1)
The UFC metric used for requirements coverage is not sufficiently rigorous and we
thus have an inadequate set of requirements-based tests, and (2) Requirements
are not sufficiently defined with respect to the system model. Thus, test suites
providing requirements coverage will be ineffective at revealing faults in the model
since there are behaviors in the model not specified in the requirements.

To assess the rigor of the UFC metric and the quality of the requirements with
regard to behaviors covered in the system model, we measured MC/DC achieved
by the reduced UFC suites over the system model. The results are summarized
in Table 4. We found that for all the case examples, UFC test suites provide less

Requirements Coverage as an Adequacy Measure for Conformance Testing 99

Table 4. MC/DC achieved by the reduced UFC suites over the system model

Avg. MC/DC Achieved Achievable Rel. Diff.
by UFC suites MC/DC

DWM 1 78.2% 92.5% 15.5%

DWM 2 25.8% 100% 74.2%

Latctl Batch 88.6% 98.0% 9.6%

Vertmax Batch 80.9% 99.8% 18.9%

than Achievable MC/DC over the system model. Thus, faults seeded in these
uncovered portions of the model cannot be revealed by the UFC suites. The ex-
tent to which the model is covered is an indicator of the effectiveness of the UFC
metric and the quality of the requirements set. On the DWM 1, Vertmax Batch,
and Latctl Batch systems the UFC suites do reasonably well, achieving an av-
erage MC/DC of 78.2%, 88.6%, and 80.9% respectively as compared to 92.5%,
98% and 99.8% achievable MC/DC. Note, however, that relative differences in
MC/DC need not correspond exactly to relative differences in fault finding be-
tween the UFC and MC/DC suites (as seen in our examples). In addition to
coverage, fault finding is also highly influenced by the nature and number of
faults seeded in covered and uncovered portions of the model. The relation be-
tween coverage and fault finding is not the focus of this paper and we hope to
investigate this in our future work.

On the DWM 2 system, the UFC suites do poorly in both fault finding and
MC/DC achieved. The UFC suites only achieve an average of 25.8% MC/DC over
the model when compared to an achievable MC/DC of 100%. Correspondingly,
the UFC suites have very poor fault finding (average of 16.7%) when compared
to the MC/DC suites (average of 90.6%), since faults seeded in the uncovered
portions of the model cannot be revealed by the UFC suites. The terrible fault
finding and MC/DC achieved by the UFC suites on the DWM 2 system was
surprising since we knew the system had a good set of requirements. To gain
better understanding we took a closer look at the requirements set and the UFC
obligations generated from them. We found that many of the requirements were
structured similar to the sample requirement (formalized as an LTL property in
the SMV [13] language) below,

LTLSPEC G(var_a > (
case

foo : 0 ;
bar : 1 ;

esac +
case

baz : 2 ;
bpr : 3 ;

esac
));

100 A. Rajan et al.

Informally, the sample requirement states that var a is always greater than the
sum of the outcomes of the two case expressions. When we perform UFC for the
above requirement, it would result in obligations for the following expressions:

1. Relational expression within the globally operator (G)
2. Atomic condition foo within the first case expression
3. Atomic condition bar within the first case expression
4. Atomic condition baz within the second case expression
5. Atomic condition bpr within the second case expression

The above requirementmay be restructured (to express the same behavior) so that
the sum of two case expressions is expressed as a single case expression as shown:

LTLSPEC G(var_a > (
case

foo & baz : 0 + 2 ;
foo & bpr : 0 + 3 ;
bar & baz : 1 + 2 ;
bar & bpr : 1 + 3 ;

esac
));

Achieving UFC coverage over this restructured requirement will involve more
obligations than before since the boolean conditions in the case expression are
more complex. UFC would result in obligations for the following expressions in
this restructured requirement:

1. Relational expression within the globally operator (G)
2. Complex condition foo & baz within the case expression
3. Complex condition foo & bpr within the case expression
4. Complex condition bar & baz within the case expression
5. Complex condition bar & bpr within the case expression

Thus, the structure of the requirements has a significant impact on the number
and rigor of UFC obligations and hence the size of the test suite providing UFC
coverage. In our experiment, we did not restructure requirements similar to the
sample requirement discussed and instead retained the original structure. There-
fore, the UFC obligations generated were fewer and far less rigorous. We believe
this is the primary reason for the poor performance (both fault finding and
MC/DC achieved) of the UFC suites for the DWM 2 system. The experience
with the DWM 2 system suggests that even with a good set of requirements,
rigorous requirements coverage metrics, such as the UFC metric, can be easily
cheated since they are highly sensitive to the structure of the requirements. The
issue here is similar to the sensitivity of the MC/DC metric to structure of the
implementation observed in [16]. MC/DC was found to be significantly less ef-
fective when used over an implementation structure with intermediate variables
and non inlined function calls as opposed to an implementation with inline ex-
panded intermediate variables and function calls. Thus, as with all structural
coverage metrics, we must be aware that the structure of the object used in
measurement plays an important role in the effectiveness of the metrics.

Requirements Coverage as an Adequacy Measure for Conformance Testing 101

To summarize, we find that the fault finding effectiveness of test suites provid-
ing requirements UFC coverage is heavily dependent on the nature and complete-
ness of the requirements. Additionally, the rigor and robustness (with respect to
requirements structure) of the requirements coverage metric used plays an im-
portant role in the effectiveness of the generated test suites. Thus, even with a
good set of requirements, test suites providing requirements structural coverage
may be ineffective if the coverage metric can be cheated. In our experiment, the
UFC metric gets cheated when requirements are structured to hide the com-
plexity of conditions on the DWM 2 system. Based on these observations and
our results, we do not recommend using requirements coverage in place of model
coverage as a measure of adequacy for conformance test suites.

4.2 Analysis - Hypothesis 2

As seen in Tables 1 and 2, for three of the four industrial case examples the
combined UFC and MC/DC suites outperform the MC/DC suite in fault finding.
For the DWM 2 system, however, the combined suites yield no improvement in
fault finding over the MC/DC suite. Statistical analysis on the data in Table 2
revealed that Hypothesis 2 is supported with a significance level of 5% for the
DWM 1, Vertmax Batch, Latctl Batch systems, and rejected for the DWM 2
system since the combined suites yield no improvement.

For the the DWM 1, Vertmax Batch, Latctl Batch systems, the combined
UFC and MC/DC suites yielded an average fault finding improvement in the
range of (4.3% - 10.8%) over the best MC/DC suite. The relative improvement
implies that the UFC suites find a considerable number of faults not revealed by
the best MC/DC suite.

To confirm that the improvement seen in DWM 1, Vertmax Batch,
Latctl Batch systems is a result of combining the MC/DC metric with the
UFC metric and not solely because of the increased number of test cases in
the combined suites, we decided to measure the UFC coverage achieved over
the requirements by the MC/DC suite. The results are summarized in Table 5.
To understand the implications of the results in the table, consider the follow-
ing two situations. If the MC/DC suite provides 100% achievable UFC over the
requirements, it implies that the combined MC/DC + UFC coverage is satis-
fied by simply using the MC/DC suite instead of the combined suites. Under
such circumstances, the fault finding improvement observed on combining the
test suites would be solely due to the increased number of test cases. On the

Table 5. UFC achieved by the reduced MC/DC suites over the system model

Avg. UFC Achieved Achievable Rel. Diff.
by MC/DC suites UFC

DWM 1 28.3% 96.9% 70.8%

DWM 2 59.7% 64.0% 6.7%

Latctl Batch 94.7% 99.5% 4.8%

Vertmax Batch 97.4% 99.0% 1.6%

102 A. Rajan et al.

other hand, if the MC/DC suite provides less than achievable UFC over the
requirements, it implies that there are scenarios/behaviors specified by the re-
quirements that are not covered by the MC/DC suite but covered by the UFC
suite. Thus, the combination may have proved more effective because of these
additional covered scenarios and not simply because of increased test cases. We
now take a closer look at the results in Table 5 to see which of these situations
occurred. We found that in all three systems (Latctl Batch, Vertmax Batch, and
DWM 1), the MC/DC suites provided less than achievable UFC coverage over
the requirements. This indicates that the UFC suites cover several behaviors
specified in the requirements that are not covered by the MC/DC suite. We pos-
tulate that these additional covered behaviors contribute to the improved fault
finding observed with the combined suites on these systems.

For the DWM 2 system, the combined suites yield no improvement in fault find-
ing over the MC/DC suite, implying that the faults revealed by the UFC suites
are a subset of the faults revealed by the MC/DC suite. The DWM 2 system con-
sists almost entirely of complex Boolean mode logic, and the MC/DC metric is
extremely effective for these type of systems. There is thus a distinct possibility
that the MC/DC suite reveals all the seeded faults (excluding semantically equiva-
lent faults that can never be revealed). This belief was strengthened when we ran
the full rather than reduced MC/DC and UFC suites and measured fault find-
ing. We found that even with the full test suites, which have a dramatically larger
number of test cases, the combination did not yield any improvement in the num-
ber of faults revealed. Therefore, we believe that there is a strong possibility the
MC/DC suites revealed all but the semantically equivalent faults on the DWM 2
system. Under such circumstances, no test suite complementing the MC/DC suite
can improve the fault finding, thus forcing us to always reject Hypothesis 2. Such
occurrences are anomalous and we discount them from our analysis.

To summarize, we found that for three of the four case examples, the com-
bined test suite providing both requirements UFC coverage and MC/DC over the
model is significantly more effective than a test suite solely providing MC/DC
over the model. For the DWM 2 system that did not support this, we strongly
believe that the MC/DC suites revealed all possible faults making improvement
in fault finding on combining with UFC suites impossible. We disregard this ab-
normal occurrence to conclude that combined test suites have better fault finding
than the MC/DC suites for all the systems. Given our results, we believe using
requirements coverage metrics, such as UFC, in combination with model cover-
age metrics, such as MC/DC, yields a significantly stronger adequacy measure
than simply covering the model.

Note that for all the case examples, all three kinds of test suites—MC/DC,
UFC, and combined—never yield 100% fault finding. This is because some of
the seeded faults may result in mutant implementations that are semantically
equivalent to the correct implementation (i.e., faults that cannot result in any
observable failure). This is a common problem in fault seeding experiments [1,
14]. In industrial size examples it is extraordinarily expensive and time consum-
ing, or—in most cases—infeasible to identify mutations that are semantically

Requirements Coverage as an Adequacy Measure for Conformance Testing 103

equivalent to the correct implementation and exclude them from consideration.
Therefore, the fault finding percentage that we give in our experiment results
is a conservative estimate, and we expect the actual fault finding for the test
suites to be higher if we were to exclude the semantically equivalent mutations.
However, this issue will not affect our conclusions since we only judge based on
relative fault finding rather than absolute fault finding.

5 Conclusions

Presently in model-based development, adequacy of conformance test suites is
inferred by measuring structural coverage achieved over the model. In this pa-
per we investigated the use of requirements coverage as an adequacy measure
for conformance testing. Our empirical study revealed that on three of the four
industrial case examples, our hypothesis stating “Requirements coverage (UFC)
is more effective than model coverage (MC/DC) when used as an adequacy mea-
sure for conformance test suites” was rejected at 5% statistical significance level.
Nevertheless, we found that requirements coverage is useful when used in combi-
nation with model coverage to measure adequacy of conformance test suites. Our
hypothesis stating that “test suites providing both requirements UFC coverage
and MC/DC over the model are more effective than test suites providing only
MC/DC over the model” was supported at 5% significance level on three of the
four case examples. The relative improvement yielded by the combined suites
over the MC/DC suites was in the range of 4.3%− 10.8%. The system that did
not support the hypothesis was an outlier where we firmly believe the MC/DC
suite found all possible faults, making improvement with the combined suites
impossible. Based on our results, we believe that the effectiveness of adequacy
measures based solely on model coverage can certainly be improved. Combining
existing metrics for model coverage and requirements coverage investigated in
this paper may be one possible way of accomplishing this. There may be other ap-
proaches, for instance, defining a new metric that accounts for both requirements
and model coverage. We hope to investigate this further in our future work.

Another observation gained in our experiment relates to the sensitivity of re-
quirements coverage metrics such as UFC to the structure of the requirements.
Test suites providing requirements coverage may be ineffective even with an excel-
lent set of requirements. This can occur when structure of the formalized require-
ments effectively “cheats” the requirements coverage metric. The UFC metric in
our experiment was cheated when requirements were structured to hide the com-
plexity of conditions in them. In our future work, we hope to define requirements
coverage metrics that are more robust to the structure of the requirements.

References

1. Andrews, J.H., Briand, L.C., Labiche, Y.: Is Mutation an Appropriate Tool for
Testing Experiments? In: Proceedings of the 27th International Conference on
Software Engineering (ICSE), pp. 402–411 (2005)

104 A. Rajan et al.

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. In: Formal Methods in System Design, pp. 141–162 (2001)

3. Briand, L.C., Di Penta, M., Labiche, Y.: Assessing and Improving State-Based
Class Testing: A Series of Experiments. IEEE Transactions on Software Engineer-
ing 30(11) (2004)

4. Chilenski, J.J., Miller, S.P.: Applicability of Modified Condition/Decision Coverage
to Software Testing. Software Engineering Journal, 193–200 (September 1994)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. Fisher, R.A.: The Design of Experiment. Hafner, New York (1935)
7. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-

quirements specifications. Software Engineering Notes 24(6), 146–162 (1999)
8. Harel, D., Marelly, R.: Come Let’s Play: Scenario-Based Programming Using LSC’s

and the Play-Engine. Springer, New York (2003)
9. Hayhurst, K.J., Veerhusen, D.S., Rierson, L.K.: A practical tutorial on modified

condition/decision coverage. Technical Report TM-2001-210876, NASA (2001)
10. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Jour-

nal on Software Tools for Technology Transfer 4(2) (February 2003)
11. Kvam, P.H., Vidakovic, B.: Nonparametric Statistics with Applications to Science

and Engineering (2007)
12. Mathworks Inc. Simulink product web site,

http://www.mathworks.com/products/simulink

13. The NuSMV Toolset (2005), http://nusmv.irst.itc.it/
14. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible

paths. Software Testing, Verification & Reliability 7(3), 165–192 (1997)
15. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Proceedings of

the 14th Conference on Computer Aided Design, pp. 485–499. Springer, Heidelberg
(2002)

16. Rajan, A., Whalen, M.W., Heimdahl, M.P.E.: The Effect of Program and Model
Structure on MC/DC Test Adequacy Coverage. In: Proceedings of 30th Interna-
tional Conference on Software Engineering (ICSE) (to appear, 2008),
http://crisys.cs.umn.edu/ICSE08.pdf

17. Rayadurgam, S.: Automatic Test-case Generation from Formal Models of Software.
PhD thesis, University of Minnesota (November 2003)

18. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using
model checkers. In: Proceedings of the 8th Annual IEEE International Confer-
ence and Workshop on the Engineering of Computer Based Systems (ECBS 2001),
April 2001, pp. 83–91. IEEE Computer Society Press, Los Alamitos (2001)

19. Rayadurgam, S., Heimdahl, M.P.E.: Generating MC/DC adequate test sequences
through model checking. In: Proceedings of the 28th Annual IEEE/NASA Software
Engineering Workshop – SEW 2003, Greenbelt, Maryland (December 2003)

20. RTCA. DO-178B: Software Consideration. In: Airborne Systems and Equipment
Certification. RTCA (1992)

21. Whalen, M.W., Rajan, A., Heimdahl, M.P.E.: Coverage metrics for requirements-
based testing. In: Proceedings of International Symposium on Software Testing and
Analysis (July 2006)

Decomposition for Compositional Verification

Björn Metzler, Heike Wehrheim, and Daniel Wonisch

Universität Paderborn
Institut für Informatik

33098 Paderborn, Germany
{bmetzler,wehrheim,dwonisch}@uni-paderborn.de

Abstract. Compositional verification is based on the idea that the cor-
rectness check of a complex system can be divided into smaller verifica-
tion tasks for its components. In this paper, we show how to decompose
a specification into components when either no such decomposition is
given, or when the given composition does not lend itself to an efficient
compositional verification. Our decomposition is the starting point for
an application of the L∗ learning algorithm, generating assumptions for
an assume-guarantee reasoning. We prove correctness of the decompo-
sition as well as present experimental results using the model checker
FDR2 as the teacher during learning.

1 Introduction

In formal system development verification ensures that the system meets the
requirements set out by the designers or customers. Most often model checking
is applied in the verification process to free the developer from manual proofs of
correctness. Despite enormous progress made in this area ever since the invention
of model checking [6], the problem of state explosion still hampers the verification
of large systems. A lot of research today is still devoted to developing techniques
which consequently allow model checking to scale to complex systems. Such
methods range from symbolic model checking with BDDs or SAT techniques via
symmetry or partial order reductions to various sorts of abstraction mechanisms.

One such technique – and the one we will be interested in here – is compo-
sitional verification [9]. Compositional verification takes a divide-and-conquer
approach to checking correctness: instead of verifying the system as a whole,
the system components are checked and the verification results are combined.
One specific approach to compositional verification is assume-guarantee (AG)
reasoning [13, 16, 19]. The verification of a system S = S1 || S2 with respect to
a property Prop is carried out in two steps: first, we show that S2 guarantees
Prop under an assumption A about its environment, and then S1 is shown to
guarantee this assumption. As a proof rule:

〈A〉 S2 〈Prop〉
〈true〉 S1 〈A〉

〈true〉 S1 || S2 〈Prop〉

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 105–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

106 B. Metzler, H. Wehrheim, and D. Wonisch

The drawback of this rule is the use of an assumption A which needs to be
found before verification can proceed. Recently, a new technique for automatic
generation of assumptions based on learning has been proposed [8]. This tech-
nique starts with a general assumption and uses a model checker as a teacher
to progressively make this assumption more precise until it either matches the
premises of the above proof rule or the property can be shown not to hold. The
efficiency of the learning algorithm (and thus of the AG reasoning) depends on
the actual decomposition of the system [7]; ideally the assumption A should
be much smaller than the component S1. Moreover, the technique relies on the
existence of a structuring of the system into parallel components.

In this paper we will be concerned with constructing decompositions in case
that (a) the system is not structured into parallel components, or (b) the ex-
isting structure does not lend itself to efficient assume-guarantee reasoning (e.g.
because the assumption A gets too large). The starting point for our technique
is a set of formal specifications written in CSP-OZ [11], a combination of the
process algebra CSP [15] and the state-based formalism Object-Z [25]. The se-
mantics of CSP-OZ are defined in terms of the semantic domain of CSP. Given
a CSP-OZ specification, we first construct its dependence graph containing con-
trol flow as well as data dependencies among specification elements (here, Z
schemas). The dependence graph construction follows a technique proposed in
[5] for slicing CSP-OZ specifications. The graph is next cut into (currently two)
parts. Roughly speaking, these two parts represent the two parallel components
of the system; a definition of valid cuts and an appropriate synchronisation of the
components has to ensure that the decomposition does not change the overall
semantics of the specification. We consequently prove correctness of the decom-
position. The cut determines the interface between components; by choosing a
small cut we can produce small assumptions for AG reasoning.

The components we obtain through this decomposition are the starting point
for the above sketched compositional verification, in which we use the technique
proposed in [8] to learn the assumption. The employed L∗ learning algorithm [1]
for regular languages requires a teacher to answer membership and equivalence
queries. In [8] the teacher is a model checker. As we are working in the semantic
domain of CSP, we use the CSP model checker FDR2 as teacher and are thereby
able to evaluate the effectiveness of the decomposition. It turns out that a compo-
sitional verification of our generated decomposition can outperform FDR2’s per-
formance during a non-compositional verification on the system as well as during
a compositional verification starting with the given decomposition of the system.
This is exemplified by a case study of a CSP-OZ specification of the Two-Phase-
Commit Protocol and its natural – as well as generated – decomposition.

2 Background and Example

The running example for this paper on which we illustrate our decomposition
as well as the verification is the Two-Phase-Commit Protocol (TPCP) [3]. We
specify this protocol in CSP-OZ, an integrated formalism combining CSP and

Decomposition for Compositional Verification 107

Object-Z. While CSP is responsible for specifying the ordering of operations in
the two phases of the protocol, Object-Z takes on the role of fixing what the
operations themselves do.

The purpose of the protocol is to guarantee consistency of N local sites (or
pages) of a distributed database. Instructed by a coordinator process, the proto-
col results in either all pages committing their transaction or all pages aborting
it. As the name says the protocol works in two phases:

– Phase 1: Commit-request: The protocol starts with the coordinator process
informing all participating pages about a request to commit the current
transaction. Next, all pages execute the transaction and send a vote to the
coordinator dependent on whether the local transaction succeeded (YES)
or failed (NO). The coordinator collects the votes and decides to either
COMMIT in the case that all votes agree on YES , or to ABORT the trans-
action.

– Phase 2: Commit: The coordinator informs all pages about the decision.
All participating sites behave accordingly: an abort leads to an undo of the
transaction while a commit leads to complet ion. In any case, the sites output
the result and send an acknowledgement to the coordinator.

Let N be the number of pages participating in the protocol and let Votes and
Trans be the following two base types:

Votes == {YES ,NO}
Trans == {COMMIT ,ABORT}

The specification given below is the CSP-OZ class for the central coordinator.
Coord
method request , vote[x? : Votes], decide, inform[x ! : Trans], acknowledge

main
c
= �0<i≤N (request → Skip); �0<i≤N (vote → Skip);

decide → �0<i≤N (inform → Skip); �0<i≤N (acknowledge → Skip)

dec : Trans
votes : PVotes

Init

dec = ABORT
votes = ∅

request
∆(votes)

votes ′ = ∅

acknowledge

vote
∆(votes); vo? : Votes

votes ′ = votes ∪ {vo?}

inform
in! : Trans

in! = dec

decide
∆(dec)

if (NO ∈ votes) then dec′ = ABORT else dec′ = COMMIT

108 B. Metzler, H. Wehrheim, and D. Wonisch

The first part of the class defines its interface, i.e. the methods/operations
(or channels in the CSP terminology) with their signatures. The next part is a
CSP process equation describing the ordering of operations of the coordinator.
Class Coord starts by sending a request to all N pages, accepts all the votes,
decides, and consequently informs all pages about the decision, and finally waits
for an acknowledge. This ordering is specified using the CSP operators for inter-
leaving (|||) – a special form of parallel composition – sequencing (;), prefixing
of operations (→) and the empty terminating process Skip. The third part – the
Object-Z part – consists of a number of schemas specifying the class’ state space,
initialisation and the operations. The class has two variables: dec for holding the
final decision and a set of votes votes . The operations can or cannot modify
these variables (specified by the ∆-list) and input and output variables (marked
? and !, respectively) help to pass values between classes. For instance, operation
vote stores an input vo? in the variable votes . Input and output variables are
in general not restricted by the CSP part. Therefore, we refrain from denoting
them there.

Note that an empty schema describes an operation which leaves all variable
values unchanged. In the following we will leave out empty schemas. Both parts,
CSP as well as Object-Z, impose restrictions on the behaviour of the class which
need to be jointly obeyed.

The class Coord operates in parallel with several instantiations of the following
class Page.

Page
method request , execute, vote[x ! : Votes], inform[x? : Trans]
method undo, complete, result [b! : Trans], acknowledge

main
c
= request → execute → vote → inform → P

P
c
= undo → result → acknowledge → Skip

� complete → result → acknowledge → Skip

dec : Trans
stable : B

Init

dec = ABORT
stable

result
b! : Trans

b! = dec

execute
∆(stable)

stable ′ ∈ {true, false}

undo
dec = ABORT

complete
dec = COMMIT

inform
∆(dec)
in? : Trans

dec′ = in?

vote
vo! : Votes

stable ⇒ vo! = YES
¬stable ⇒ vo! = NO

Decomposition for Compositional Verification 109

Here, we employ an additional CSP operator: the choice operator (�) for choos-
ing between alternatives. The choice between undo and complete is determined
by the Object-Z part: undo has a predicate dec = ABORT in its schema (which
works as a precondition), while commit can only be executed when dec equals
COMMIT .

The full system is specified as

System = Coord‖S (�0<i≤N Page)

with S = {request , vote, inform, acknowledge}. Here, we use a different CSP
parallel composition operator: ||S requires joint execution of the operations (or
events in CSP terminology) in S , i.e. Coord and Pages need to synchronize
on request , vote, inform and acknowledge. For the remainder of this paper, let
Pages = �0<i≤N Page. This completes the specification of the TPCP.

Next, we are interested in verifying a specific property of the Two-Phase-
Commit protocol, i.e. of System. The property is a safety property and states
that if at least one page votes NO , all pages will undo the transaction. Before
formally specifying this property, we first have to clarify the language we use for
writing properties. The formalism CSP-OZ has a joint semantics for CSP and
Object-Z parts, which is given in terms of CSP alone. CSP on the other hand
has a semantics given within the failures-divergences model. Here, we will solely
be interested in safety properties and move to the simpler domain of traces.
Traces represent the behaviour of a system in terms of the possible orderings of
its events. Thus the basis for our semantics is a set Events representing all valid
events of our system. This set consists of operation names together with values
for parameters. For our example, Events contains the events inform.ABORT ,
decide, vote.NO , etc. Given this set Events , the trace semantics of a system S
is a (prefix-closed) set of traces:

traces(S) ⊆ 2Events∗

As with the systems, we also specify properties as sets of traces, namely simply
by giving all valid traces possessing a particular property. While we could also
use CSP-OZ for property specification, here we will stick to CSP for this purpose.
The following CSP specification presents our correctness property for the TPCP:

PROP = PC (N)
PC (0) = �0<i≤N complete → Skip

PC (j) = vote.YES → PC (j − 1) � vote.NO → PU (j − 1)
PU (0) = �0<i≤N undo → Skip

PU (j) = �
x :{YES ,NO}

vote.x → PU (j − 1)

The process PC (j) allows for j votes (and thus PROP for N votes) and - if
control flow has not left the process before - finally N events complete. As soon
as one vote is NO , PC processes switch to some process PU . PU (j) also allows
for j votes (with any parameter value) but always terminates with undos. Thus

110 B. Metzler, H. Wehrheim, and D. Wonisch

as soon as we have one event vote.NO , the final events of PROP will be undo.
The question is now whether the traces of System (concerning the interesting
events vote, undo and complete, here extracted by hiding (\) all other events)
are contained in those of PROP , i.e.

traces(System\{request , execute, inform, decide, result , acknowledge})
⊆ traces(PROP)

This check for trace inclusion is a standard check for CSP specifications as one
of CSP’s refinement orderings is trace inclusion.

Definition 1. Let P ,Q be CSP processes. P is a trace refinement of Q, if
traces(P) ⊆ traces(Q). We write Q �T P. P is trace equivalent to Q, P =T Q,
if P �T Q and Q �T P.

This being standard for CSP, we can use the CSP model checker FDR2 [18] to
check it, using a technique proposed in [12] to translate a CSP-OZ specification
into CSP. As it turns out, FDR2 fails to carry out this check for more than 5
pages.

Next, we tried to use assume-guarantee reasoning to show the property. The
System specification is already structured using parallelism, with Coord being
S1 and all Pages S2. Thus we used the AG rule given in the introduction. This
rule has been proven correct and complete [21]. Rephrased in terms of CSP’s
traces refinement, the rule reads:

PROP �T A ||X S2

A �T S1

PROP �T S1 ||Y S2

(1)

Here, the sets X and Y are synchronisation sets defined by X = α(A) ∩ α(S2)
and Y = α(S1)∩α(S2) (intersection of alphabets). The assumption A represents
a restriction on S2’s environment which is necessary for S2 to guarantee PROP .
On the other hand, S1 needs to guarantee this restriction. For generating the
assumption we use the technique proposed in [8]. This method employs Angluin’s
L∗ algorithm for learning regular languages (a finite automaton) to generate
the assumption A. The algorithm needs to employ a teacher which can answer
membership as well as equivalence queries. The proposal of [8] was to use a
model checker to this end. We have a prototypical implementation of the L∗

algorithm which takes CSP processes as inputs, calls the CSP model checker
FDR2 whenever a teacher is required and ultimately either outputs ’true’ and
an assumption if PROP �T S1 ||Y S2 is true or ’false’, if not. Using the given
structure of System, the assume-guarantee reasoning unfortunately gives us no
gain at all. In the contrary, the run-times get worse and the check fails as soon
as we reach 5 pages (see the section on experimental results). The reason for
this is that the part which produces most of the complexity is Pages as it is
the interleaving of a large number of processes. The state space of Pages needs
to be constructed in both the verification of the complete system and in the

Decomposition for Compositional Verification 111

AG verification. It would be preferable to have a decomposition of the system
which splits the process Pages such that the compositional verification never
needs to consider Pages in its entirety. Next, we will see how to construct such
a decomposition of the system.

3 Decomposition of a Specification

We aim to decompose a specification into two components allowing the applica-
tion of assume-guarantee reasoning. To find a suitable decomposition in this con-
text we need to analyse a specification’s dependence structure: the specification’s
elements (operations of a class) might depend on each other. The distribution of
dependent elements over both components is not desirable. However, if required,
it necessitates that an assumption describes the correlation between the differ-
ent operations. Thus we need to define what dependence means and we need to
ensure that the decomposition preserves the overall dependence structure of the
specification. To find a small assumption – and this is preferable – the number
of intersecting dependencies between the components should be small.

Fortunately, for CSP-OZ and in the context of program slicing [28], Brueckner
[4] developed a precise dependence analysis for CSP-OZ and defined a specifica-
tion’s Dependence Graph:

Definition 2. (Dependence Graph of a specification)
The Dependence Graph (DG) G = (N ,→DG) of a specification S is defined
over a set of nodes N = cf (N)∪ op(N) and a set of edges →DG=→ ∪ ��	. The
set cf (N) corresponds to operators within the specification’s CSP part whereas
op(N) corresponds to operations of the specification.1 For the set of edges, we
distinguish control flow edges (→) from program dependence edges (��).

The set of DG edges describes dependencies between different nodes of the DG
mostly following the principle of cause and effect – i.e. the edge’s source node
controls or influences execution of its target node. The DG comprises the Control
Flow Graph (CFG) and the Program Dependence Graph (PDG).

As the name says, the CFG covers dependencies with respect to the specifi-
cation’s control flow structure. This is mainly derived from its CSP part. As an
example: in class Page, request prefixes execute leading to a control flow edge
from request to execute.

Along with this, the PDG edges describe dependencies between different op-
erations of the specification such as data-, control-, synchronisation data- or
interference data dependencies. They refer to the set of state variables of the
class’ Object-Z part. An example of a data dependence is the edge from execute
to vote – the variable stable is modified within execute and referenced in vote,
i.e. stable ∈ mod(execute) ∩ ref (vote) where mod(op) and ref (op) denote the

1 For simplicity, instead of defining the DG with respect to predicate nodes, we use
operation nodes.

112 B. Metzler, H. Wehrheim, and D. Wonisch

sets of modified and referenced variables within an operation op, respectively.
A synchronisation data dependence exists between the events execute of both
classes since Page.execute has an output that Coord .execute uses as an input.
Note that PDG edges only connect operation nodes.

As a multiple occurrence of an Object-Z operation within the CSP part of
a specification is possible, we define the correlation between operation nodes of
the DG and operations of the specification:

Definition 3. (Labelling of DG nodes)
Let G = (N ,→DG) be the DG of a specification S and let Op be the set of all
operations of S . The labelling function l : op(N) → Op maps an operation node
of the DG on its corresponding operation name within S . For O ⊆ Op, we define
l−1[O] := {n ∈ op(N) | l(op) ∈ O}.

In the following, we assume the alphabet of the CSP part and the set of Object-Z
operations to be equal. Thus, for the CSP part, Op is the set of events projected
on its names omitted from its parameters.

For a complete definition of a specification’s DG, see [4]. Figure 1 shows (a
slightly simplified version of2) the DG for System. We use different types of
arrows to illustrate control flow- (→) and program dependence-edges (��).

Fig. 1. Dependence Graph for System Fig. 2. Cut for l−1[{decide, vote}]

2 Here, we omit the additional start- and term-nodes for the parallel composition of
both classes. We do also not incorporate the intermediate seq-nodes within Coord
for the sequential composition of the interleavings. For an operation op, we use op[i]
to depict its i-th execution within the corresponding CSP-interleaving. Page[i] is an
arbitrary instance of Page.

Decomposition for Compositional Verification 113

3.1 A Cut of a Dependence Graph

All dependencies between different specification elements are represented in the
specification’s DG. Thus to decompose a given specification S into two parts,
we start by defining a decomposition of the DG.

The basic idea is the definition of a cut C identifying the interface between
the parallel components which we define subsequently. Being a subset of the
DG’s operation nodes, a cut fragments the DG into two subgraphs representing
the two stages (phases) of the graph. The cut will then yield a decomposition of
the specification itself. In the context of assume-guarantee reasoning, we set the
following objectives:

– The overall semantics of S are preserved, i.e. the original specification is
trace equivalent to its decomposition, when both parts are combined via
parallel composition,

– the decomposition is efficient in the context of assume-guarantee reasoning,
i.e. a cut leads to a relatively small intersection between the components and
uniformly distributed operations.

In the remainder of the paper, we will not generally distinguish between con-
trol flow edges and program dependence edges. Next, we define the cut of a
specification’s dependence graph.

Definition 4
Let G = (N ,→) be a graph and N ′ ⊆ N . Then,

N ′↓:= {n ∈ N | ∃n ′ ∈ N ′ • n →∗ n ′} (all nodes reaching N ′),
N ′↑:= {n ∈ N | ∃n ′ ∈ N ′ • n ′ →∗ n} (all nodes reachable from N ′).

Definition 5. (Cut of the DG)
Let G = (N ,→DG) be the DG of a given specification. A cut C ⊆ op(N) of G
is a subset of the operation nodes of N such that
a) C↓ ∪C↑= N ,
b) �c ∈ C↓ \C, c′ ∈ C↑ \C • c →DG c′ ∨ c′ →DG c,
c) ∀n1,n2 ∈ op(N) • l(n1) = l(n2) ⇒ (n1 ∈ C ⇔ n2 ∈ C)

C is a subset of the DG’s operation nodes determining a split of the DG into
C↓ and C↑ and it is used to define the decomposition of a specification S into
S1 and S2. S1 and S2 are the parallel components of the decomposition with the
intersection of C↓ and C↑ defining the interface between S1 and S2.

Condition a) states that for any node n ∈ N , either the cut is reachable from
n or n is reachable from the cut. Therefore, no node will be left out. Condition
b) states that DG edges must not cross the cut. This condition ensures that
there are no dependencies from one component to another circumventing the
cut. Condition c) states that for operations with multiple occurrence within the
CSP part, either all or none of the corresponding DG nodes are contained in
the cut. This condition is required to ensure proper synchronisation between the
constructed parallel components.

114 B. Metzler, H. Wehrheim, and D. Wonisch

In the context of a cut C, we will call C↓ the precut and C↑ the postcut.
Next, we define a condition on the relation between C↓ and C↑ to restrict the
distribution of a DG:

Definition 6. (sequential cut)
Let G = (N ,→DG) be the DG of a given specification. A cut C sequentially
distributes G, iff C↑ ∩C↓= C. We call C a sequential cut.

The condition for the sequential distribution of a DG states that there are no
nodes leading to the cut which are also reachable from the cut. Thus, the DG
can be viewed in two stages, with a unique distribution of all nodes: a first stage
before the cut and a second stage starting from the cut, with the cut itself being
their intersection. In particular, a sequential cut requires that all cycles of the
DG are distributed over the resulting two subgraphs without intersecting with
the cut itself. All paths connecting both subgraphs must pass the cut.

Even though we consider a rather specific, simple class of dependence graphs
to illustrate our approach and the applicability of the assume-guarantee proof
rule, our approach is not restricted to sequential distributions: the definition of
a cut can as well be applied to circular dependence graphs. This will be part of
our future work.

For our example, based on two heuristics for the definition of a cut, the de-
composition of the DG with respect to the set C = l−1[{vote, decide}]3 is given
in Figure 2. These heuristics can informally be described as follows:4

– A cut should contain as few as possible nodes and its corresponding opera-
tions should modify as few as possible variables,

– A cut should be defined in the middle part of the DG.

Using the set C′ = {decide} would lead to a violation of the cut definition due
to the cut-crossing CFG edge from vote to inform on the right hand side of the
DG. Therefore, we additionally needed to add vote. {decide, vote} indeed defines
a sequential cut since neither there are cut-crossing edges nor nodes outside of
C assigned to the first and to the second stage. Condition c) holds as well since
all DG nodes assigned to the operation vote are contained in the cut.

3.2 Decomposition of a Specification

As a next step, we define the decomposition of a specification. This will be done
with respect to a sequential cut of its DG. Precut and postcut will be used
to define two components S1 and S2 with the following goal: S1 || S2 has the
same set of traces as S and is therefore – in our semantic domain – equivalent
to S . The decisive point in this definition is the synchronisation alphabet: we
need to guarantee correct values for the state variables in the second stage. These
variables might have been modified during the first stage. Synchronization should

3 In the following cut-examples, we will synonymously use S and l−1[S].
4 A closer investigation of heuristics for selecting optimal cuts will form part of our

future work.

Decomposition for Compositional Verification 115

thus lead to a passing of the current values. To ensure this, we use the set of cut
events as the synchronisation alphabet and identify all variables modified during
the first stage. These are then communicated to the second stage.

A CSP-OZ definition of a class S consists of the following elements:
S
I [interface definition]
main [CSP part]
State [OZ part: state schema]
Init [OZ part: initial state schema]
op [OZ part: operations]

For m ∈ Op, a method declaration has the form m[p1 : t1, . . . , pm : tm]
with parameters pi of type ti . For the corresponding Object-Z operation, op.par
denotes its parameter declaration and op.pred its predicate part. Var denotes
the set of state variables of a class. For M ⊆ Op, let {| M |} := {m.i .o ∈
Events | m ∈ M }.

To define the decomposition, we first need to define a projection of a CSP
process to a subset of its events. This projection will then be used to decompose
the CSP part with respect to the precut and the postcut.

Definition 7. (Projection of CSP processes, [4])
Let P be the right-hand side of a CSP process definition and E ⊆ Events. The
projection of P on E, denoted by P |E , is inductively defined:

1. Skip|E := Skip and Stop|E := Stop,

2. (e → P)|E :=

{
P |E , e �∈ E
e → P |E , otherwise,

3. (P ◦ Q)|E := (P |E) ◦ (Q |E) for ◦ ∈ {; , |||, �,�},
4. (P ||S Q)|E := (P |E) ||S∩E (Q |E).

To determine the projection of a complete CSP part, Definition 7 has to be
applied to every CSP process definition. Next, we define the decomposition of S
with respect to a sequential cut:

Definition 8. (Decomposition with respect to a sequential Cut)
Let S be a specification and G = (N ,→DG) be its dependence graph. Let C be
a sequential cut and let M1 := l [C↓ ∩op(N)], M2 := l [C↑ ∩op(N)], MC :=
M1 ∩M2, Ei := {| Mi |}, EC := {| MC |}, V1 := Var(M1), V2 := Var(M2) and

VC = {x ∈ S .Var | ∃n ∈ MC,n ′ ∈ (M2 \ MC) • n →∗
DG n ′ ∧

x ∈ (mod(n) ∩ ref (n ′))}.
Given a set VC = {x1, . . . , xn} of types si , for m ∈ Op, let {xm1, . . . , xmk

} =
VC∩mod(m). We use a function f to define the interface extension of the class:

f (m[p1 : t1, . . . , pm : tm] ={
m[p1 : t1, . . . , pm : tm , am1 :sm1 , . . . , amk

:smk
, bm1 :rm1 , . . . , bml

:rml
], m ∈ MC

m[p1 : t1, . . . , pm : tm], otherwise

116 B. Metzler, H. Wehrheim, and D. Wonisch

The decomposition of S with respect to C into S1 and S2 is defined as5:
S1

I1 := f (I |M1)
main1 := main|E1 [extended by additional parameters]
State1 := State � V1

Init1 := Init � V1 (∗)
op1 :={

op, op ∈ M1 \ MC

[op.par , ami ! : smi , bmj ? : rmj | op.pred ∧
∧k

i=1 ami ! = x ′
mi

], op ∈ MC

S2

I2 := f (I |M2)
main2 := main|E2 [extended by additional parameters]
State2 := State � V2

Init2 := Init � V2 (∗)
op2 :={

op, op ∈ M2 \ MC

[op.par , ami ? : smi , bmj ? : rmj |
∧k

i=1 x ′
mi

= ami ?], op ∈ MC

I |M depicts the restriction of the set of methods within the interface I onto M .
For the initial state schemas Initi , the definition is annotated with an asterisk:
the coarse idea is a projection of Init onto all predicates solely dealing with Vi .
Atomic predicates sharing variables local to S1 and S2 need to be restricted but
can not be left out. Here, we omit a detailed definition of Initi .

We take a closer look at the additional parameters for m ∈ MC. Firstly, VC

defines exactly the set of state variables from the first stage that influence the sec-
ond stage of the specification. Note that any such variable must be modified inside
some cut event since otherwise there would be cut-crossing edges in the DG. For
each xi ∈ VC ∩ mod(op), we use parameters ami : smi extending the type of op.
These parameters uncover the influence of the first component on the second one.
Secondly, Definition 5 allows for a cut containing two or more DG nodes with the
same labelling. Since parallel composition based on events does not distinguish
between these nodes, we need to ensure that in the decomposition, corresponding
instances of the event are synchronized. This is achieved by adding additional ad-
dress parameters bmj : rmj to the respective channels solely being restricted by the
CSP part. On the one hand, these parameters ensure that all previously allowed
synchronisations are still possible. On the other hand, synchronisation between
S1 and S2 is restricted to matching DG nodes. The number of address parameters
depends on the number of classes synchronizing on op whereas the type rmj de-
pends on the cardinal number of l−1[{op}]. We will exemplify this on our example
and refrain from giving a precise definition here.

For the Object-Z part, we extend any operation of the cut with corresponding
additional outputs (S1) and inputs (S2), respectively. Moreover, we eliminate the
remaining predicate part of the shared operations within S2.
5 State � V denotes the projection of State on a subset V of its state variables.

Decomposition for Compositional Verification 117

3.3 Example Revisited

We apply the decomposition to our example. Based on our objective to de-
compose a specification into equally distributed components, we define sev-
eral sequential cuts and investigate each one. The verification results are given
in the next section. Here, we illustrate the decomposition for the set EC =
{vote, decide} as introduced in Section 3.1. We split E into

E1 = {request , execute, vote, decide} and
E2 = {vote, decide, inform, undo, complete, failure, result , acknowledge}.

The definition of a DG’s cut is not restricted to a single class. In fact, the DG is
defined with respect to the full specification possibly containing several classes.
Since System comprises two classes Coord and Page, both will be decomposed
into components Coord1,Coord2 and Page1,Page2, respectively. For the paral-
lel composition System1 ||EC System2, Systemi is defined as Coordi || Pagesi .
System1 can be viewed as the first and System2 as the second stage of the pro-
tocol. Control flow according to System is restored by the parallel composition.

According to Definition 8, the resulting specification slices are given below.
Since VC = {Coord .dec}, event decide is extended by one parameter for the com-
munication of Coord .dec. Also, event vote is extended by two additional param-
eters to ensure synchronisation for matching occurrences of vote. We explicitly
depict these parameters in the CSP part since they are restricted there. Based
on | l−1[{Coord .vote}] |=| l−1[{Pages .vote}] |= N , these parameters are of type
N = {1, . . . ,N }. To address specific instances of Page1 and Page2, we adopt
CSP-OZ’s concept of constant parameters, and use Pagesj = �0<i≤NPagej (i).

Coord1

method request , vote[p1? : N; p2? : N; x? : Votes], decide[a! : Trans]

main = �0<i≤N (request → Skip); �0<i≤N (vote?p1.i → Skip); decide → Skip

dec : Trans
votes : PVotes

Init

dec = ABORT
votes = ∅

request

votes ′ = ∅

vote
∆(votes)
p1? : N; p2? : N; vo? : Votes

votes ′ = votes ∪ {vo?}

decide
∆(dec); a! : Trans

a! = dec′

if (NO ∈ votes) then dec′ = ABORT else dec′ = COMMIT

118 B. Metzler, H. Wehrheim, and D. Wonisch

Page1(i : N)
method request , vote[p1? : N; p2? : N; x ! : Votes], execute

main = request → execute → vote.i?p2 → Skip

stable : B
Init

stable

vote
p1? : N; p2? : N; vo! : Votes

stable ⇒ vo! = YES
¬stable ⇒ vo! = NO

execute
∆(stable)

stable ′ ∈ {true, false}

Coord2

method vote[p1? : N; p2? : N; x? : Votes], decide[a? : Trans]
method inform[x ! : Trans], acknowledge

main = �0<i≤N (vote?p1.i → Skip); decide → �0<i≤N (inform → Skip);
�0<i≤N (acknowledge → Skip)

dec : Trans
Init

dec = ABORT

inform
in! : Trans

in! = dec

decide
∆(dec); a? : Trans

dec′ = a?

vote
p1? : N; p2? : N; vo? : Votes

Page2(i : N)
method vote[p1? : N; p2? : N; x ! : Votes], inform[x? : Trans], undo
method complete, result [b! : Trans], acknowledge

main = vote.i?p2 → inform → P
P = undo → result → acknowledge → Skip

� complete → result → acknowledge → Skip

dec : Trans
Init

dec = ABORT

inform
∆(dec); in? : Trans

dec′ = in?

result
b! : Trans

b! = dec

undo
dec = ABORT

complete
dec = COMMIT

vote
p1? : N; p2? : N; vo! : Votes

Decomposition for Compositional Verification 119

In [9], the motivation for introducing and specifying the TPCP is its particular
structure allowing for an appliance of the Communication-Closed-Layers law
(CCL) [10]. Our way of decomposing a specification is one particular way of
adopting the CCL.

3.4 Correctness of the Decomposition

We will now show that the full specification is trace equivalent to the composition
of both components constructed in Definition 8. As mentioned in Section 2, for
our main goal we want to apply the assume-guarantee rule 1 from Section 2 to
show PROP �T S . To show correctness of the decomposition we have to show

S =T S1 ||EC S2, (2)
i.e. our original specification is trace equivalent to the parallel composition of
the components. Then we can apply the given rule with respect to S :

PROP �T A ||X S2

A �T S1

PROP �T S

The following lemma will be applied to establish the overall correlation between
the specification and the decomposition:

Lemma 1
Let Pi ,Qi be CSP processes and Ai ,Bi their respective alphabets. Then,

(P1 A1||A2 P2) A1∪A2||B1∪B2 (Q1 B1||B2 Q2) =
(P1 A1||B1 Q1) A1∪B1||A2∪B2 (P2 A2||B2 Q2)

Proof
We use rule (2.5)

(P ||X∩Y Q) ||(X∪Y)∩Z R = P ||X∩(Y∪Z) (Q ||Y∩Z R)

from [23], p. 57 and incrementally deduce the equation.

Next, we state the main theorem of this paper: the decomposition of a specifi-
cation based on a sequential cut is trace equivalent to the original specification.

Theorem 1. (Correctness of the Decomposition)
Let S be a specification and G = (N ,→DG) be its DG. Let C be a sequential cut
and let S1 and S2 be the decomposition of S with respect to Definition 8. Then,
the following holds:

S =T S1 ||EC S2 (3)

Proof
In our semantic domain we are interested in traces(S) ⊆ 2Events∗

. Based on the
CSP trace semantics for CSP-OZ we get traces(S) := traces(main ||Events OZ).
Thus, a trace of a CSP-OZ class is a trace within the parallel composition of
the specification’s CSP part and Object-Z part, respectively, synchronizing on
the set Events . We compositionally show (3) by dealing with the specification’s
CSP- and Object-Z part independently. If we can show

120 B. Metzler, H. Wehrheim, and D. Wonisch

main =T main1 ||EC main2, (4)
OZ =T OZ1 ||EC OZ2 for the set of traces of the CSP part, (5)

we can subsequently apply Lemma 1 with respect to A1 = A2 = E1, B1 = B2 =
E2 and deduce

traces(S)
= traces(main ||Events OZ) (Def . of S)
= traces((main1 ||EC main2) ||Events (OZ1 ||EC OZ2)) ((4), (5))
= traces((main1 ||E1∩E2 main2) ||Events (OZ1 ||E1∩E2 OZ2)) (E1 ∩ E2 = EC)
= traces((main1 ||E1 OZ1) ||E1∩E2 (main2 ||E2 OZ2)) (Lemma 1)
= traces((main1 ||E1 OZ1) ||EC (main2 ||E2 OZ2)) (E1 ∩ E2 = EC)
= traces(S1 ||EC S2) (Def . of S1,S2)

Due to lack of space, we refrain from giving the complete proofs of (4) and
(5) but outline the ideas. The core idea for (4) is to assume that any trace
tr ∈ traces(main) has the following structure:

tr1 � trC � tr2
E1 EC E2

We then show that tr ∈ traces(main) if and only if tr1 � trC ∈ traces(main1)
and trC � tr2 ∈ traces(main2) holds. Here, we particularly use Condition c) of
Definition 5. However, if tr switches between different interleaving branches of
the CSP part, an event of E2 \ EC can be executed before an event of E1 \ EC

without violating the cut definition. To solve this problem, we apply Lemma 1
to restructure the trace and treat interleaving branches separately.

For the Object-Z part, OZ =T OZ1 ||EC OZ2 would be preferable. However,
this equivalence does in general not hold: if the CSP part does not determine
the ordering of events, a trace within traces(OZ) may not correspond to the
paths of the DG. The cut is defined with respect to the DG, the decomposition
might access and output inconsistent values. Thus, tr ∈ traces(OZ) does not
need to be an element of traces(OZ1 ||EC OZ2) and vice versa. Indeed, we show
the following, weaker property for the Object-Z part:

∀ tr � Op ∈ traces(main) � Op • tr ∈ traces(OZ) ⇔ tr ∈ traces(OZ1 ||EC OZ2)
(6)

It states that OZ =T OZ1 ||EC OZ2 if the CSP part determines the ordering of
events within the trace. Since this will always be the case for a trace within a
CSP-OZ specification, it is sufficient to show (5). To do so, given tr ∈ traces(OZ),
we need to construct tri traces(OZi) such that both synchronize on EC. For the
reverse direction, we have to construct an equivalent tr ∈ traces(OZ) out of
tri ∈ traces(OZi).

The complete proof of (4) and (5) uses all the various dependencies of the
PDG. For instance, data dependencies ensure that in case a certain variable
is modified, it always refers to the correct variable values used in the modifica-
tion. Synchronization dependencies ensure that synchronized events are not split
between the two components.

Decomposition for Compositional Verification 121

4 Implementation and Experimental Results

To evaluate our approach we implemented Angluin’s learning algorithm and the
framework of [8] for the CSP model checker FDR2 (Failure Divergence Refine-
ment) [18] to automatically verify a specification against a property based on the
assume-guarantee proof rule [29]. Using the CSP semantics of CSP-OZ developed
in [12], the specification is translated into the input language of FDR2.

The property we are aiming at can be described as follows: if at least one page
votes with NO , all pages will undo their transaction. The CSP specification for
PROP has already been given in Section 2. This property can now be checked
for trace refinement against the full specification (with events not occurring in
PROP hidden), i.e. using FDR2 syntax we check

assert PROP [T= SYSTEM \ {|request, execute, inform,
decide, result, acknowledge|}

We ran FDR2 on a Linux PC (Open SUSE 10.2) equipped with a 3 GHz Pentium
4 processor and 1 GB RAM. In Table 1, we give an overview of the computation
times and sizes of the generated state spaces for using FDR2 to check PROP

– directly calling FDR2 on System without using compositional reasoning,
– using L∗ and assume-guarantee reasoning based on the given decomposition

into Coord and Pages ,
– using L∗ and assume-guarantee reasoning based on our decomposition based

on three different sequential cuts:
1. Vot1‖Vot2 for the cut {vote},
2. Dec1‖Dec2 for the cut {decide, vote},
3. Inf1‖Inf2 for the cut {inform}.

We started with one instance of the component Page and incrementally increased
N – the value used is given in the third column. The fourth column displays the
verification time in seconds; column 5 and 6 indicate the size of the computed
state space for components 1 and 2, respectively. One asterisk symbolizes that the
machine ran out of memory due to exceeding its swap limit after approximately
90 minutes whereas two asterisks denote that there was no computation result
after more than four hours.

Apparently, if we use our decomposition and L∗, we are able to verify the prop-
erty for a higher N compared to verification of the original specification. Further-
more, we achieve much better runtime results. The best results are achieved for
the decomposition based on the cut {decide, vote}. Since the cut {decide, vote}
outperforms the cut {vote}, we can deduce that the smallest cut may not al-
ways achieve the best results. In particular, in our example, {vote} leads to
VC = {votes} – this variable is not represented in the corresponding set for
{decide, vote} since we are decomposing the specification at a point after which
votes will never be used again.

Despite this there is no significant difference between the verification times for
the different cuts we were looking at. The generated assumptions for N equals 2
for two of the cuts are depicted in Figure 3 (omitted from address parameters;

122 B. Metzler, H. Wehrheim, and D. Wonisch

Table 1. Experimental Results for FDR2

System L∗ N Time/sec States Comp.1 States Comp.2

Coord || Pages no 1 <1 Full System: 47
2 <1 Full System: 1116
3 <1 Full System: 26190
4 6 Full System: 623376
5 227 Full System: 14984838
6 (*) Full System: unknown

Coord || Pages yes 1 1 9 65
2 9 17 4353
3 35 24 287496
4 656 31 18974736
5 (*) 37 (**)

Vot1 || Vot2 yes 1 <1 17 12
2 1 288 53
3 3 4374 217
4 5 64800 893
5 21 949158 3673
6 302 13845168 15053
7 (*) (**) 61417

Dec1 || Dec2 yes 1 <1 23 11
2 1 324 50
3 2 4590 210
4 5 66096 878
5 19 956934 3642
6 236 13891824 14990
7 (*) (**) 61290

Inf1 || Inf2 yes 1 <1 29 8
2 1 432 77
3 2 6102 639
4 4 85536 5201
5 19 1197990 41799
6 275 16831152 333137
7 (*) (**) 2640759

Fig. 3. Final assumptions for PROP based on Cuts {decide, vote} and {inform}

0, 1 and 3, 4 are abstractions of YES ,NO and COMMIT ,ABORT , respectively).
Runtime behaviour is worst for the given decomposition. Here, the results suffer
from a larger generated assumption with more states and transitions.

5 Conclusion and Related Work

This paper presented an approach to compositional verification illustrated on
specifications written in the integrated formal method CSP-OZ. We decomposed

Decomposition for Compositional Verification 123

a specification such that the resulting components can efficiently be used for
assume-guarantee reasoning. The decomposition is performed on the specifica-
tion’s dependence graph. We showed correctness of the approach. In the context
of automatically generating assumptions we illustrated the technique on an ex-
ample specification. Verification results are carried out using the CSP model
checker FDR2.

Related work. Assume-guarantee reasoning was first introduced by Chandy
and Misra [19] and Jones [17, 16]. Compositional verification for integrated for-
mal methods undergoes intensive research. For CSP‖B, a coupling of the B
method with CSP, Treharne and Schneider explored compositional proof tech-
niques [24] by also using FDR2 for verification of CSP processes.

The static analysis of a specification is the foundation for the decomposition
technique proposed in this paper. Brueckner [4] defined a CSP-OZ dependence
graph which we incorporated here. He used it to compute a specification slice
[26] with respect to a certain property. Our decomposition technique is more
closely related to the technique of program chopping [22] – we do not compute
full specification slices but rather chop the specification up to the point at which
the assumption holds.

Cobleigh et al. first used the L* algorithm in the context of automatic learn-
ing an assumption for compositional reasoning [8] in the domain of Labelled
Transition Systems. We implemented their framework in our context for FDR2.

Alur and Nam [20] do assume-guarantee based reasoning in the context of
symbolic model checking. They also use L∗ to automatically generate assump-
tions and decompose a given system. The decomposition is computed fully au-
tomatically in terms of hypergraph partitioning. In their semantic domain of
symbolic transition modules based on solely boolean variables, they do not deal
with control flow, synchronisation and dependence graphs.

Future work. This paper is intended to provide the basic concept for a de-
composition and automated verification technique for CSP-OZ. There are many
follow-up steps to be taken, some of which are described below.

The requirement that the dependence graph is sequential is quite strong.
To relax this restriction, we need to deal with circularity within the DG. The
technique proposed in this paper will thus be extended to specifications with a
recursive structure. In this case, we aim to reuse the decomposition technique by
defining two cuts determining the switch from the first to the second phase and
vice versa. This will lead to the application of a symmetric assume-guarantee
proof rule where two assumptions can be learned simultaneously [2].

Even though most of the steps within this framework can be performed au-
tomatically, such as the computation of the DG, the translation of a CSP-OZ
class to the input language of FDR2 and the assumption learning, the defini-
tion of a cut is currently done by hand. To find an optimal cut in the sense of
evenly distributed components we might use techniques presented in [14, 27] to
compare several possible decompositions in terms of a lattice of decomposition
slices. Other heuristics need to be defined and evaluated.

124 B. Metzler, H. Wehrheim, and D. Wonisch

Finally, we aim at evaluating the approach on a much bigger case study.

Acknowledgement. We thank Ramsay Taylor for fruitful discussions on the
topic and for correcting our English.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75, 87–106 (1987)

2. Barringer, H., Giannakopoulou, D., Pasareanu, C.S.: Proof rules for automated
compositional verification through learning. In: International Workshop on Speci-
fication and Verification of Component Based Systems, Finland (2003)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison (1987)

4. Brückner, I.: Slicing Integrated Formal Specifications for Verification. PhD thesis,
Universität Paderborn (2008)

5. Brückner, I., Wehrheim, H.: Slicing an integrated formal method for verification.
In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360–374.
Springer, Heidelberg (2005)

6. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems 8(2), 244–263 (1986)

7. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: an inves-
tigation of decomposition for assume-guarantee reasoning. In: ISSTA 2006: Pro-
ceedings of the 2006 international symposium on Software testing and analysis,
pp. 97–108. ACM Press, New York (2006)

8. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

9. de Roever, W.P., Hanneman, U., Hooiman, J., Lakhneche, Y., Poel, M., Zwiers,
J., de Boer, F.: Concurrency Verification. Cambridge University Press, Cambridge
(2001)

10. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-
closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

11. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: Formal Methods
for Open Object-Based Distributed Systems (FMOODS 1997), vol. 2, pp. 423–438.
Chapman and Hall, Boca Raton (1997)

12. Fischer, C., Wehrheim, H.: Model-checking CSP-OZ specifications with FDR. In:
IFM, pp. 315–334 (1999)

13. Francez, N., Pnueli, A.: A proof method for cyclic programs. Acta Informatica 9(2)
(1978)

14. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17(8), 751–761 (1991)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

16. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp.
321–332 (1983)

17. Jones, C.B.: Tentative steps towards a development method for interfering pro-
grams. Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

Decomposition for Compositional Verification 125

18. Formal Systems (Europe) Ltd. Failure divergence refinement: Fdr2 user manual
(1997)

19. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw.
Eng. 7(4), 417–426 (1981)

20. Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with au-
tomatic decomposition. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 170–185. Springer, Heidelberg (2006)

21. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153.
Springer, Heidelberg (2000)

22. Reps, T.W., Rosay, G.: Precise interprocedural chopping. In: SIGSOFT FSE, pp.
41–52 (1995)

23. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

24. Schneider, S., Treharne, H.: Verifying controlled components. In: IFM, pp. 87–107
(2004)

25. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (2000)

26. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3, 121–189 (1995)

27. Tonella, P.: Using a concept lattice of decomposition slices for program under-
standing and impact analysis. IEEE Trans. Software Eng. 29(6), 495–509 (2003)

28. Weiser, M.: Programmers use slices when debugging. Commun. ACM 25(7), 446–
452 (1982)

29. Wonisch, D.: Automatisiertes kompositionelles Model Checking von CSP Spezi-
fikationen. Bachelor’s thesis, Universität Paderborn (April 2008)

A Formal Soundness Proof of Region-Based Memory
Management for Object-Oriented Paradigm�

Florin Craciun1, Shengchao Qin1, and Wei-Ngan Chin2

1 Department of Computer Science, Durham University, UK
{florin.craciun,shengchao.qin}@durham.ac.uk

2 Department of Computer Science, National University of Singapore, Singapore
chinwn@comp.nus.edu.sg

Abstract. Region-based memory management has been proposed as a viable
alternative to garbage collection for real-time applications and embedded soft-
ware. In our previous work we have developed a region type inference algorithm
that provides an automatic compile-time region-based memory management for
object-oriented paradigm. In this work we present a formal soundness proof of
the region type system that is the target of our region inference. More precisely,
we prove that the object-oriented programs accepted by our region type system
achieve region-based memory management in a safe way. That means, the re-
gions follow a stack-of-regions discipline and regions deallocation never create
dangling references in the store and on the program stack. Our contribution is to
provide a simple syntactic proof that is based on induction and follows the stan-
dard steps of a type safety proof. In contrast the previous safety proofs provided
for other region type systems employ quite elaborate techniques.

1 Introduction

Modern object-oriented programming languages provide a run-time system that auto-
matically reclaims memory using tracing garbage collection [24]. A correct garbage
collector can guarantee that the memory is not collecting too early, and also that all
memory is eventually reclaimed if the program terminates. However the space and time
requirements of garbage-collected programs are very difficult to estimate in practice.
Therefore many different solutions have been proposed for real-time applications and
embedded software running on resource-limited platforms. These solutions either com-
pletely omit the use of garbage collectors (e.g. JavaCard platform), or use real-time
garbage collectors [1], or use region-based memory management (e.g. Real-Time Spec-
ification for Java (RTSJ) [3]).

Region-based memory management systems allocate each new object into a
program-specified region, with the entire set of objects in each region deallocated si-
multaneously when the region is deleted. Various studies have shown that region-based
memory management can provide memory management with good real-time perfor-
mance. Individual object deallocation is accurate but time unpredictable, while region
deletion presents a better temporal behavior, at the cost of some space overhead. Data

� The work is supported in part by the EPSRC project EP/E021948/1.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 126–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Formal Soundness Proof of Region-Based Memory Management 127

locality may also improve when related objects are placed together in the same region.
Classifying objects into regions based on their lifetimes may deliver better memory
utilization if regions are deleted in a timely manner.

The first safe region-based memory system was introduced by Tofte and
Talpin [22,23] for a functional language. Using a region type inference system, they
have provided an automatic static region-based memory management for Standard ML.
More precisely, their compiler can group heap allocations into regions and it can stat-
ically determine the program points where it is safe to deallocate the regions. Later,
several projects have investigated the use of region-based memory management for C-
like languages (e.g. Cyclone [13]) and object-oriented languages [9,5]. These projects
provide region type checkers and require programmers to annotate their programs with
region declarations. The type checkers then use these declarations to verify that well-
typed programs safely use the region-based memory.

In our previous work [8], we have developed the first automatic region type in-
ference system for object-oriented paradigm. Our compiler automatically augments
unannotated object-oriented programs with regions type declarations and inserts region
allocation/deallocation instructions that achieve a safe memory management. In this
paper we provide the safety proof of our region type system that is the target of our
previous region inference algorithm.

Bottom (oldest region)

r2

r4

r3

Top (youngest region)

r1

possible dangling reference

non−dangling reference

r0

Fig. 1. Lexically-Scoped Regions

In our work, we use lexically-
scoped regions such that the
memory is organised as a stack
of regions, as illustrated in Fig. 1.
Regions are memory blocks that
are allocated and deallocated by
the construct letreg r in e,
where the region r can only be
used to allocate objects in the
program e. The older regions
(with longer lifetime) are allo-
cated at the bottom of the stack
while the younger regions (with
shorter lifetime) are at the top.
The region lifetime relations are
expressed using a transitive out-
live relation, denoted by�. Thus,
we can define the lifetime constraints r0�r1∧r1�r2∧r2�r3∧r3�r4 on the regions
of Fig. 1. Region lifetime constraints (as shown in Fig. 2) are of two main forms r1�r2

and r1=r2. The constraint r1�r2 indicates that the lifetime of region r1 is not shorter
than that of r2, while the constraint r1=r2 denotes that r1 and r2 must be the same re-
gion. The equality can be expressed as an outlive relation such that r1=r2 iff r1�r2 and
r2�r1.

Dangling references are a safety issue for region-based memory management. Fig. 1
shows two kinds of references: non-dangling references and possible dangling refer-
ences. Non-dangling references originate from objects placed in a younger region and

128 F. Craciun, S. Qin, and W.-N. Chin

point to objects placed either in an older region or inside the same region. Possible dan-
gling references occur when objects placed in an older region point to objects placed in
a younger region. They turn into dangling references when the younger region is deal-
located. Using a dangling reference to access memory is unsafe because the accessed
memory may have been recycled to store other objects. There are two approaches to
eliminating this problem. The first approach allows the program to create dangling ref-
erences, but uses an effect-based region type system to ensure that the program never
accesses memory through a dangling reference [22,23,9,13]. The second approach uses
a region type system to prevent the program from creating dangling references at all
[5]. Our work has adopted the second approach.

Contributions. The main contribution of this paper is the soundness proof of our re-
gion type system for object-oriented paradigm. We prove that our region type system
guarantees that well-typed programs use lexically-scoped regions and never create dan-
gling references in the store and on the program stack. We provide a simple syntactic
proof based on induction (rather than a more elaborate co-induction machinery), that
follows the standard steps of a type safety proof [25]. Our small-step dynamic seman-
tics decomposes high-level expression letreg r in e into three intermediate opera-
tions: allocation of region r on the stack, evaluation of program e, and deallocation of
region r. The difficulty is to prove that after deallocation of region r, the store, the pro-
gram stack and the remaining code do not contain any reference to region r and to the
objects stored in region r. To prove that region deallocation is safe, we use the region
constraints of our type system and a syntactic condition that we imposed to restrict the
valid intermediate code. However our syntactic restriction does not restrict high-level
source code, it only defines the correct intermediate code to which high-level code can
be evaluated.

Related Work. In the original effect-based region type system, Tofte and
Talpin [23,21,2] and later Christiansen and Velschow [9], in their region calculus for
object-oriented languages make use of co-induction to prove the soundness. Their proof
requires co-induction partly because they prove two properties at the same time: type
soundness and translation soundness. The latter property guarantees that there exists
a semantic relation between source program and its region-annotated counterpart. Our
safety theorems are only focused on the problem of type soundness, thus are simpler
to prove. A co-inductive definition is required in their proof also because they use a
big-step semantics where certain information is lost when deleting a region from the
store, as discussed in [15,7]. Our system uses a small-step operational semantics in-
strumented with regions which makes the consistency definition and the proof easier.
Calcagno [6] uses a stratified operational semantics to avoid co-induction in the proof
of safety properties of a simple version of Tofte and Talpin’s region calculus, while
Helsen et al. [15,14] introduces a special constant for defunct regions in their big-step
semantics which makes the soundness proof simpler. A similar proof with ours is the
safety proof of Niss [19], that in addition to a simple functional language handles an
imperative calculus, and like our proof avoids explicit co-induction by using store typ-
ing. Cyclone [13] also has an effect system used for a soundness proof and does not
use co-induction. Elsman [12] refines Tofte and Talpin’s region type system in order to
forbid the dangling references and proves by induction the safety for a small functional

A Formal Soundness Proof of Region-Based Memory Management 129

language. There are many differences between his proof and ours. His proof is based
on a small-step contextual semantics [17], while in our proof we explicitly model the
heap as a stack of regions and we use a consistency relation between the static and
dynamic semantics. In addition Elsman uses a syntax-directed containment relation to
express the regions of the program values and also to force the stack discipline for re-
gions’allocation and deallocation. In our case the region requirements and the order
among regions are expressed by the region constraints of the type system. However we
also impose a syntactic condition to restrict the valid intermediate (non-source) pro-
grams. Boudol [4] refines Tofte and Talpin’s region calculus to a flow-sensitive effect-
based region type system, that explicitly records the deallocations effects. He provides
a simple proof for a functional language by means of a subject reduction property up
to simulation. Although his simulation is half-bisimulation, his proof does not employ
co-induction. In contrast our region type system is a flow-insensitive calculus. However
our syntactic restriction on intermediate code has a similar role as the flow-sensitive
deallocation effect. Our type system is similar to SafeJava’s type system of Boyapati et
al. [5], but in addition we support the region subtyping principle [13]. However SafeJava
does not provide a formal proof for its region type system.

Outline. The paper is organized as follows. Section 2 introduces the syntax of our re-
gion calculus. Section 3 presents our region type system, while Section 4 defines the
dynamic semantics of our region calculus. Section 5 extends the static semantics to in-
termediate expressions, while Section 6 presents the soundness theorems. A brief con-
clusion is given. The technical report [11] contains the details of our inductive proofs.

2 Region Calculus

Our region calculus is designed by annotating with regions a Java-like object-oriented
language, named Core-Java [10]. The full syntax of the region-annotated Core-Java
language is given in Fig. 2. Core-Java is designed in the same minimalist spirit as the
pure functional calculus Featherweight Java [16]. Despite its expression-oriented syn-
tax, Core-Java supports imperative features.

Each class definition is parameterized with one or more regions to form a region
type. For instance, a region type cn〈r1, ..., rn〉 is a class name cn annotated with region
parameters r1...rn. Parameterization allows us to obtain a region-polymorphic type for
each class whose fields can be allocated in different regions. The first region parameter
r1 is special: it refers to the region in which the instance object of this class is allocated.
The fields of the objects, if any, are allocated in the other regions r2...rn which should
outlive the region of the object. This is expressed by the constraint

∧n
i=2(ri � r1), which

captures the property that the regions of the fields (in r2...rn) should have lifetimes no
shorter than the lifetime of the region (namely r1) of the object that refers to them. This
condition, called no-dangling requirement, prevents dangling references completely, as
it guarantees that each object never references another object in a younger region. In
general the class invariant, ϕ, of a class consists of the no-dangling requirement for
the region type of the current class, the no-dangling requirements for the fields’ region
types, and the class invariant of the parent class We do not require region parameters

130 F. Craciun, S. Qin, and W.-N. Chin

t ::= cn〈r+〉 | prim〈〉 | ⊥ (region types)
prim ::= int | boolean | void
ϕ ::= r1 � r2 | r1 = r2 | true | ϕ1 ∧ ϕ2 (region constraints)
P ::= def∗ (region annotated program)
def ::= class cn1〈r+〉 extends cn2〈r+〉 where ϕ

{(t f)∗ meth∗} (region annotated class declaration)
meth ::= t mn〈r∗〉((t v)∗) where ϕ {e} (region annotated method)
e ::= null | k | v | v.f | v = e | v.f = e (region annotated expression)

| e1 ; e2 | {(t v) e} | new cn〈r+〉(v∗)
| v.mn〈r∗〉(v∗) | if v then e1 else e2 | while v e
| letreg r in e (region declaration)
cn ∈ class names r ∈ region variable names
mn ∈ method names k ∈ integer or boolean constants
f ∈ field names v ∈ variable names

Fig. 2. The Syntax of Region-Annotated Core-Java

for primitive types, since primitive values can be copied and stored directly on the stack
or they are part of an object. In order to keep the same notation, we use prim〈〉 to denote
a region annotated primitive type. Although null values are of object type, they are
regarded as primitive values. The type of a null value is denoted by ⊥.

[RegSub]

ϕ=(x1�x̂1) ∧
Vn

i=2(xi=x̂i)

�cn〈x1..n〉<:cn〈x̂1..n〉, ϕ

[SubClass]

class cn〈r1..n〉 extends cn′〈r1..m〉.. ∈ P′

n≥m≥p � cn′〈x1..m〉<:cn′′〈x′
1..p〉, ϕ

� cn〈x1..n〉<:cn′′〈x′
1..p〉, ϕ

[Null]

� ⊥<:cn〈x1..n〉, true

Fig. 3. Region Subtyping Rules

The region subtyping principle al-
lows an object from a region with
longer lifetime to be assigned to a lo-
cation where a region with a shorter
lifetime is expected. This principle
is illustrated by the subtyping rule
[RegSub] of Fig. 3. This rule relies on
the fact that once an object is allocated
in a particular region, it stays within
the same region and never migrates to
another region. This property allows
us to apply covariant subtyping to the
region of the current object. However,
the object fields are mutable (in gen-
eral) and must therefore use invariant
subtyping to ensure the soundness of
subsumption. The other two rules, [SubClass] and [Null] from Fig. 3 denote the class
subtyping and the fact that a null value can be assigned to any object, respectively.

Every method is decorated with zero or more region parameters; these parameters
capture the regions used by each method’s parameters (including this) and result. For
simplicity, no other externally defined regions are made available for a method. Thus,
all regions used in a method either are mapped to these region parameters or are lo-
calised by letreg in the method body. Each method also has a method precondition, ϕ

A Formal Soundness Proof of Region-Based Memory Management 131

expressed as a region lifetime constraint that is consistent with the operations performed
in the method body. The method precondition also contains the class invariants of its
parameters including the receiver and its result. The instance methods of a subclass can
override the instance methods of the superclass.

Consider the Pair class in Fig. 4. As there are two fields in this class, a distinct
region is introduced for each of them, r2 for fst field and r3 for snd field. The Pair
object is placed in the region r1. To ensure that every Pair instance satisfies the no-
dangling requirement, the region lifetime constraint r2�r1∧r3�r1 is added to the
class invariant.

class Pair〈r1,r2,r3〉 extends Object〈r1〉
where r2�r1 ∧ r3�r1 {
Object〈r2〉 fst;
Object〈r3〉 snd;

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o)
where r4�r3∧r2�r1∧r3�r1
{snd=o;}

void swap〈r1,r2,r3〉() where r2=r3∧r2�r1
{ Object〈r2〉 tmp=fst;fst=snd;snd=tmp}

Pair〈r5,r6,r7〉 exalloc〈r1,r2,r3,r5,r6,r7〉()
where r7�r5∧r6�r5∧r2�r1∧r3�r1

{letreg r in {
Pair〈r7,r7,r7〉 p4;
Pair〈r,r,r〉 p3;
Pair〈r5,r6,r7〉 p2;
Pair〈r,r,r〉 p1;
p4 = new Pair〈r7,r7,r7〉(null,null);
p3 = new Pair〈r,r,r〉(p4,null);
p2 = new Pair〈r5,r6,r7〉(null,p4);
p1 = new Pair〈r,r,r〉(p2,null);
p1.setSnd〈r,r,r,r〉(p3); p2} }

}

Fig. 4. Region-Annotated Core-Java Program

Consider the setSnd,
swap, and exalloc

methods of the Pair

class. A set of distinct
region parameters are in-
troduced for the methods’
parameters, and the re-
sults, as shown in Fig. 4.
The receiver regions
are taken from the class
definition. Moreover, the
methods’ region lifetime
constraints are based on
the possible operations of
the respective methods.
For example, due to an
assignment operation
and region subtyping,
we have r4�r3 for
setSnd, while r2=r3

is present due to the
swapping operation on
the receiver object in the
swap method. Though
the swap method’s region
constraint is exclusively
on the regions of the

current object, we associate the constraint with the method. In this way, only those
objects that might call the method are required to satisfy this constraint. The class
invariants of methods’ parameters (including the receiver and their result) are also
added to the methods’ region constraints. The exalloc method’s body introduces
a local region r using letreg. Since the p1 and p3 objects do not escape from the
exalloc method’s body, they are stored in the local region r. The p2 and p4 objects
escape through the method result, therefore they are stored in the method result’s
regions r5 and r7, respectively.

132 F. Craciun, S. Qin, and W.-N. Chin

[RC−PROG]
WFClasses(P)

P = def1 .. defn
FieldsOnce(defi) i = 1..n

MethodsOnce(defi) i = 1..n
P � InheritanceOK(defi) i = 1..n

P �def defi i = 1..n

� P

[RC−CLASS]
def = class cn〈r1..n〉extends c〈r1..m〉

where ϕ {field1..p meth1..q}
r1 �∈

Sp
i=1 reg(fieldi)

ϕ⇒ri � r1 i = 2..n R = {r1, . . . , rn}
P; {this : cn〈r1..n〉}; R; ϕ �meth methi i = 1..q

P; R; ϕ �field fieldi i = 1..p

P �def def

[RC−METH]
Γ ′ = Γ + (vj : tj)j:1..p R′ = R ∪ {r1, . . . , rm}

ϕ′ = ϕ ∧ ϕ0 P; R′; ϕ′ �type tj , j = 0..p
P; Γ ′; R′; ϕ′ � e : t′0 P; R′; ϕ′ � t′0 <: t0

P; Γ ; R; ϕ �meth t0 mn〈r1..m〉((tj vj)j:1..p)where ϕ0 {e}

[RC−EB]
P; R; ϕ �type t′

Γ ′ = Γ + (v : t′)
P; Γ ′; R; ϕ � e : t

P; Γ ; R; ϕ � {(t′ v) e} : t

[RC−VAR]
(v : t) ∈ Γ

P; Γ ; R; ϕ � v : t

[RC−NEW]
P; R; ϕ �type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

(vi : t′i) ∈ Γ P; R; ϕ � t′i <: ti i = 1..p

P; Γ ; R; ϕ � new cn〈r1..n〉(v1, .., vp) : cn〈r1..n〉
[RC−INVOKE]

(v0 : cn〈a+〉) ∈ Γ P; R; ϕ �type cn〈a+〉
(t mn〈a+r′+〉((ti vi)i:1..n)where ϕ0 {e}) ∈ cn〈a+〉

(v′
i : t′i)i:1..n ∈ Γ a′+∈R ρ = [r′+ �→a′+]
ϕ⇒ρ ϕ0 P; R; ϕ � t′i<:ρ ti i = 1..n

P; Γ ; R; ϕ � v0.mn〈a+a′+〉(v′
1..v

′
n) : ρ t

[RC−LETR]
a = fresh()

ϕ′ = ϕ ∧
V

r′∈R(r
′�a)

P; Γ ; R∪{a}; ϕ′ � [r �→a]e : t
reg(t) ⊆ R

P; Γ ; R; ϕ � letreg r in e : t

ρt, ρϕ, ρe region substitution on a type, a constraint, and an expression
fresh() returns one or more new/unused region names

Fig. 5. Region Type Checking Rules

3 Region Type System: Static Semantics

Our region type system guarantees that region-annotated Core-Java programs never cre-
ate dangling references. To avoid variable name duplication, we assume that the local
variables of the blocks and the arguments of the functions are uniquely renamed in a
preprocessing phase. A part of region type checking rules are depicted in Fig. 5, with
some auxiliary rules in Fig. 6 (a complete description of region type system is given
in [11]). Judgments of the following forms are employed:

– � P denoting that a program P is well-typed.
– P �def def denoting that a class declaration def is well-formed.
– P;Γ ;R;ϕ �meth meth denoting that a method meth is well-defined with respect to the

program P, the type environment Γ , the set of live regions R, and the region con-
straint ϕ.

– P;Γ ;R;ϕ�e:t denoting that an expression e is well-typed with respect to the program
P, the type environment Γ , the set of live regions R, and the region constraint ϕ.

A Formal Soundness Proof of Region-Based Memory Management 133

– P; R; ϕ �type t denoting that a type t is well-formed, namely, the regions of the type t
are from the set of the live regions R, and the invariant of the type t is satisfied by
the constraint context ϕ.

– P; R �constr t, ϕ denoting that the regions of the type t are from the set of the live
regions R, while ϕ is the invariant of the type t.

– P; R; ϕ �field field denoting that the type of a field field is well-formed with respect to
�type judgment.

– P; R; ϕ � t<:t′ denoting that the type t is a subtype of the type t′, namely both types
are well-formed and the region constraint of the subtyping relation (defined in
Fig. 3) is satisfied by the constraint context ϕ.

The rule [RC−PROG] denotes that a region-annotated program is well-typed if all de-
clared classes are well-typed. The predicates in the premise are used to capture the
standard well-formedness conditions for the object-oriented programs such as no dupli-
cate definitions of classes and no cycle in the class hierarchy; no duplicate definitions
of fields; no duplicate definitions of methods; and soundness of class subtyping and
method overriding.

reg({})=def{} reg({v:τ 〈r∗〉}∪Γ)=def{r∗}∪reg(Γ)

reg(τ 〈r∗〉)=def{r∗} reg((τ 〈r∗〉 f))=def{r∗}
reg(r1�r2)=def{r1, r2} reg(r1=r2)=def{r1, r2}

reg(true)=def{} reg(ϕ1∧ϕ2)=defreg(ϕ1)∪reg(ϕ2)

fieldlist(Object〈r〉)=def[]

class cn1〈r1..n〉 extends cn2〈r1..m〉..{(ti fi)i:1..p..}∈P′

=fieldlist(ρ cn2〈r1..m〉) ρ=[ri �→xi]
n
i=1

fieldlist(cn1〈x1..n〉)=def
++[(ρ ti) fi]
p
i=1

Fig. 6. Auxiliary Region Checking Rules

The rule [RC−CLASS] in-
dicates that a class is well-
formed if all its fields and
methods are well-formed,
and the class invariant en-
sures the necessary life-
time relations among class
region parameters. In addi-
tion, the rule does not al-
low the first region of the
class to be used by the re-
gion types of the fields. Us-
ing the first region on a
field would break the ob-
ject (region) subtyping (rule [RegSub] of Fig. 3). Function reg(fieldi) returns the region
variables of a field type (see Fig. 6).

The rule [RC−METH] checks the well-formedness of a method declaration. Each re-
gion type is checked to be well-formed, that means its regions are in the current set of
live regions and its invariant is satisfied by the current constraint context. The method
body is checked using the type relation for expressions such that the gathered type has
to be a subtype of the declared type.

Our type relation for expressions is defined in a syntax-directed fashion. Take note
that region constraints of the variables are not checked at their uses ([RC−VAR]), but
at their declaration sites ([RC−EB]). The region invariant of an object is also checked
when that object is created ([RC−NEW]). In the rule for object creation ([RC−NEW]), the
function fieldlist(cn〈x1..n〉) returns a list comprising all declared and inherited fields of
the class cn〈x1..n〉 and their region types according to the regions x1..xn of the class cn
(see Fig. 6). They are organized in an order determined by the constructor function.

134 F. Craciun, S. Qin, and W.-N. Chin

The rule [RC−INVOKE] is used to check a method call. It ensures that the method re-
gion parameters are live regions and the method precondition is satisfied by the current
constraint context as ϕ⇒ρϕ0. A substitution ρ is computed for the method’s formal re-
gion parameters. The current arguments are also checked to be subtypes of the method’s
formal parameters.

The rule [RC−LETR] is used to check a local region declaration. The local expression
is checked with an extra live region a (that is a fresh region), and an extra constraint∧

r′∈R(r
′�a) that ensures that newly introduced region is on the top of the region stack.

The rule uses a region substitution on the expressions. Note that the region substitutions
on expressions, constraints and types are defined as expected. The gathered region type
of the local expression is checked to contain only live regions (from R excepting a).
This guarantees that the localized region a does not escape. Function reg(t) returns all
region variables of t (see Fig. 6).

4 Dynamic Semantics

In this section we define the dynamic semantics of our region calculus. Our dynamic
semantics rules use runtime checks to throw an error and to abort the execution, when-
ever the evaluation of a region-annotated Core-Java program tries to create a dangling
reference. In Section 6 we prove that those runtime checks are redundant for well-typed
programs, namely the evaluation of a well-typed region-annotated Core-Java program
never creates a dangling reference. The dynamic semantics is defined as a small-step
rewriting relation from machine states to machine states. A machine state is of the form
〈�, Π〉[e], where � is the heap organized as a stack of regions, Π is the variable en-
vironment, and e is the current program. Our dynamic semantics was inspired by the
previous work on abstract models of memory management [18] and region-based mem-
ory management [9,13]. The following notations are used:

Region Variables : r, a ∈ RegVar

Offset : o ∈ Offset

Locations :
 or (r, o) ∈ Location=RegVar×Offset

Primitive Values : k | null ∈ Prim

Values : δ ∈ Value = Prim � Location

Variable Environment : Π ∈ VEnv = Var ⇀fin Value

Field Environment : V ∈ FEnv = FieldName ⇀fin Value

Object Values : cn〈r∗〉(V) ∈ ObjVal = ClassName× (RegVar)n × FEnv

Store : � ∈ Store = []|[r �→Rgn]Store

Runtime Regions : Rgn ∈ Region = Offset ⇀fin ObjVal

Regions are identified by region variables. We assume a denumerably infinite set of
region variables, RegVar. The store � is organized as a stack, that defines an ordered
map from region variables, r to runtime regions Rgn. The notation [r �→Rgn]� denotes a
stack with the region r on the top, while [] denotes an empty store. The store can only
be extended with new region variables. A runtime region Rgn is an unordered finite map

A Formal Soundness Proof of Region-Based Memory Management 135

from offsets to object values. We assume a denumerably infinite set of offsets, Offset for
each runtime region Rgn.

The set of values that can be assigned to variables and fields is denoted by Value.
Such a value is either a primitive value (a constant or a null value) or it is a location in
the store. A location consists of a pair of a region variable and an offset.

An object value consists of a region type cn〈r∗〉, and a field environment V mapping
field names to values. V is not really an environment since it can only be updated, never
extended. An update of field f with value δ is written as V +{f �→δ}.

The variable environment Π is a mapping Var ⇀fin Value, while the type environment
Γ that corresponds to the runtime variable environment is also a mapping Var ⇀fin Type.
To avoid variable name duplication, we assume that the local variables of the blocks
and the arguments of the functions are uniquely renamed in a preprocessing phase.

Notation f : A ⇀fin B denotes a partial function from A to B with a finite domain,
written A = dom(f). We write f+{a �→ b} for the function like f but mapping a to b (if
a∈dom(f) and f(a)=c then (f+{a �→ b})(a)=b). The notation {} (or ∅) stands for an un-
defined function. Given a function f : A ⇀fin B , the notation f−C denotes the function
f1 : (A−C) ⇀fin B such that ∀x∈(A−C)·f1(x)=f(x).

We require some intermediate expressions for the small-step dynamic semantics to
follow through. The intermediate expressions help our proof to use simpler induction
techniques rather than a more elaborate co-induction machinery. The syntax of inter-
mediate expressions is thus extended from the original expression syntax, as follows:

e ::= . . . | (r, o) | ret(v, e) | retr(r, e)

The expression ret(v, e) is used to capture the result of evaluating a local block, or the
result of a method invocation. The variable associated with ret denotes either a block
local variable or a method receiver or a method parameter. This variable is popped from
the variable environment at the end of the block’s evaluation. In the case of a method
invocation there are multiple nested rets which pop off the receiver and the method
parameters from the variable environment at the end of the method’s evaluation. The
expression retr(r, e) is used to pop off the top region, r of the store stack at the end of
expression e evaluation.

Dynamic semantics rules of region annotated Core-Java are shown in Fig. 7 and
Fig. 8. The evaluation judgment is of the form:

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]

where � (�′) denotes the store before (after) evaluation, while Π (Π ′) denotes the vari-
able environment before (after) evaluation. The store � organized as a stack establishes
the outlive relations among regions at runtime. The function ord(�) returns the outlive
relations for a given store. The function dom(�) returns the set of the store regions,
while the function location dom(�) returns the set of all locations from the store. They
are defined as follows:

ord([r1 �→Rgn1][r2 �→Rgn2]�)=def(r2�r1)∧ord([r2 �→Rgn2]�)
ord([r �→Rgn]) =def true ord([]) =def true
dom([r �→Rgn]�)=def{r}∪dom(�) dom([r �→∅]�)=def{r}∪dom(�) dom([])=def∅
location dom(�)=def{(r, o) | �=�1[r �→Rgn]�2 ∧ Rgn�=∅ ∧ o∈dom(Rgn)}

Notation �(r)(o) denotes an access into the region r at the offset o, as follows:

�(r)(o)=defRgn(o) where �=�1[r �→Rgn]�2

136 F. Craciun, S. Qin, and W.-N. Chin

[D−VAR]

v ∈ dom(Π)

〈�, Π〉[v]↪→〈�, Π〉[Π(v)]

[D−FD]

Π(v)=(r, o) �=�1[r �→Rgn]�2 Rgn(o)=cn〈a+〉(V)

〈�, Π〉[v.f]↪→〈�, Π〉[V (f)]

[D−ASSGN1]

lhs = v | v.f
〈�, Π〉[e]↪→〈�′, Π ′〉[e′]

〈�,Π〉[lhs = e]↪→〈�′, Π ′〉[lhs = e′]

[D−ASSGN2]

v∈dom(Π) Π ′=Π+{v �→δ}
δ=(r1, o1) ∧ r1∈dom(�)

〈�,Π〉[v = δ]↪→〈�, Π ′〉[()]

[D−ASSGN2−DANGLERR]

v ∈ dom(Π)
δ=(r1, o1) ∧ r1 �∈dom(�)

〈�, Π〉[v=δ]↪→danglingerr

[D−ASSGN3]

Π(v)=(a, o) �=�1[a �→Rgn]�2 Rgn(o)=cn〈a+〉(V)
Rgn′=Rgn+{o�→cn〈a+〉(V+{f �→δ})}�′=�1[a �→Rgn′]�2

δ=(r1, o1) ∧ ord(�)⇒(r1�fieldregion(cn〈a+〉, f))

〈�, Π〉[v.f = δ]↪→〈�′, Π〉[()]
[D−ASSGN3−DANGLERR]

Π(v)=(a, o) �=�1[a �→Rgn]�2 Rgn(o)=cn〈a+〉(V)
δ=(r1, o1) ∧ ¬ (ord(�)⇒(r1�fieldregion(cn〈a+〉, f)))

〈�, Π〉[v.f = δ]↪→danglingerr

[D−NEW]

class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P ord(�)⇒ϕinv

�=�1[r1 �→Rgn]�2 V ={f1 �→Π(v1), ..., fp �→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

if Π(vi)=(r′i, o
′
i) then ord(�)⇒(r′i�fieldregion(cn〈r1..n〉, fi)) i=1..p

o/∈dom(Rgn) Rgn′=Rgn+{o�→cn〈r1..n〉(V)} �′=�1[r1 �→Rgn′]�2

〈�, Π〉[new cn〈r1..n〉(v1..p)]↪→〈�′, Π〉[(r1, o)]

[D−NEW−DANGLERR]

class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P
V ={f1 �→Π(v1), ..., fp �→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

¬(ord(�)⇒ϕinv) ∨ (∃i∈{1..p} ·Π(vi)=(r′i, o
′
i) ∧

¬(ord(�)⇒(r′i�fieldregion(cn〈r1..n〉, fi)))

〈�, Π〉[new cn〈r1..n〉(v1..p)]↪→danglingerr

[D−INVOKE]

{a+, a′+}⊂dom(�)
Π(v′0) = (a1, o) �(a1)(o) = cn〈a+〉(V)

(t0 mn〈a+r′+〉((t v)1..p)where ϕ {e}) ∈ cn〈a+〉
ni=fresh() i = 0..p ρ=[r′+ �→a′+] Π ′=Π+{ni �→Π(v′i)i:0..p}

e′=ret(n0,ret(n1, ..ret(np, [this �→n0][vi �→ni]
p
i:1ρe)))

〈�,Π〉[v′0.mn〈a+a′+〉(v′1..p)]↪→〈�,Π ′〉[e′]
[D−INVOKE−DANGLERR]

¬(r+∈dom(�))

〈�,Π〉[v.mn〈r+〉(v∗)]↪→danglingerr

Fig. 7. Dynamic Semantics for Region-Annotated Core-Java: Part I

A Formal Soundness Proof of Region-Based Memory Management 137

[D−EB]

n=fresh() Π ′=Π+{(n �→init(t))} e′=ret(n, e)
〈�,Π〉[{(t v) e}]↪→〈�,Π ′〉[e′]

[D−RET1]

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]
〈�,Π〉[ret(v, e)]↪→〈�′, Π ′〉[ret(v, e′)]

[D−RET2]

〈�,Π〉[ret(v, δ)]↪→〈�, Π−{v}〉[δ]
[D−LETR]

a=fresh()

〈�,Π〉[letreg r in e]↪→〈[a�→∅]�, Π〉[retr(a, [r�→a]e)]

[D−RETR1]

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]
〈�,Π〉[retr(a, e)]↪→〈�′, Π ′〉[retr(a, e′)]

[D−RETR2]

(δ=(r, o))⇒(r∈dom(�))
∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(�))

∀(r1, o)∈location dom(�) · (�(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(�)∧
∀f ∈ dom(V) . V(f)=(rf , of) ∧ rf∈dom(�))

〈[a �→Rgn]�, Π〉[retr(a, δ)]↪→〈�, Π〉[δ]
[D−RETR2−DANGLERR]

¬(a=a1)∨
¬((δ=(r, o))⇒(r∈dom(�))) ∨ ¬((∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(�))))
∨¬(∀(r1, o)∈location dom(�) · (�(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(�)∧

∀f ∈ dom(V) . V(f)=(rf , of) ∧ rf∈dom(�)))

〈[a �→Rgn]�, Π〉[retr(a1, δ)]↪→danglingerr

[D−IF1]

Π(v)=true
〈�, Π〉[if v then e1 else e2]↪→〈�,Π〉[e1]

[D−IF2]

Π(v)=false
〈�,Π〉[if v then e1 else e2]↪→〈�, Π〉[e2]

[D−LOOP1]

Π(v)=true
〈�, Π〉[while v e]↪→〈�, Π〉[e ; while v e]

[D−LOOP2]

Π(v)=false
〈�, Π〉[while v e]↪→〈�, Π〉[()]

[D−SEQ1]

〈�, Π〉[e1]↪→〈�′, Π ′〉[e′1]
〈�,Π〉[e1 ; e2]↪→〈�′, Π ′〉[e′1 ; e2]

[D−SEQ2]

〈�,Π〉[δ1 ; e2]↪→〈�, Π〉[e2]

[D−NULLERR1]

Π(v)=null
〈�,Π〉[v.f]↪→nullerr

[D−NULLERR2]

Π(v)=null
〈�,Π〉[v.f = δ]↪→nullerr

[D−NULLERR3]

Π(v)=null
〈�, Π〉[v.mn〈a∗〉(u∗)]↪→nullerr

Fig. 8. Dynamic Semantics for Region-Annotated Core-Java: Part II

We define the meaning of no-dangling references property at runtime. The property
refers to two kinds of references: (1) references from variable environment to store

138 F. Craciun, S. Qin, and W.-N. Chin

locations, and (2) references from store locations to other store locations. Note that the
notion of no-dangling references was introduced in Fig. 1, and a reference is formalized
as a location (r, o).

Definition 1. (live location) A location (r, o) is live with respect to a store �, if r ∈
dom(�).

Definition 2. (no-dangling)

1. A variable environment Π is no-dangling with respect to a store � if for all v
∈ dom(Π),Π(v) is either a primitive value, or a live location (r, o) with respect
to �.

2. A runtime store � is no-dangling if each region r1 ∈ dom(�) contains only ref-
erences to regions older than itself, that means that for each location (r1, o) ∈
location dom(�) containing an object value �(r1)(o)=cn〈r1..n〉(V), that object value
satisfies the non-dangling requirement for a class, such that ord(�)⇒

∧
i:2..n(ri�r1)

and the current values of the fields are either primitives or references to regions
older than those expected by the region type cn〈r1..n〉, as follows:

∀f ∈ dom(V) . V(f)=(rf , of) ord(�)⇒rf�fieldregion(cn〈r1..n〉, f)
Function fieldregion(cn〈r1..n〉, f) computes the region type of the class field f and then
returns its first region where the field is expected to be stored.

The dynamic semantics evaluation rules may yield two possible runtime errors, namely:
Error ::= nullerr | danglingerr

The first error nullerr is due to null pointers (by accessing fields or methods of null
objects). The second error danglingerr is reported when a store updating operation
or a variable environment updating operation creates a dangling reference. Our dynamic
semantics rules use runtime checks to guarantee that a danglingerr error is reported
(and the execution is aborted) whenever the program evaluation tries to create a dan-
gling reference. There are five situations that require no-dangling reference checks at
runtime:

– Creation of a new object value. Rule [D−NEW] checks whether the class invariant
holds, ord(�)⇒ϕinv (mainly whether the fields regions ri:2..n outlive the region r1

of the object). The initial value of a field is also checked to be stored in a region that
outlives the expected region of that field r′i�fieldregion(cn〈r1..n〉, fi). The function
fieldlist(cn〈r1..n〉) is defined in Fig. 6.

– Updating of an object’s field. Rule [D−ASSGN3] checks whether the region r1 of
the new location δ=(r1, o1) outlives the expected region for the object field f ,
r1�fieldregion(cn〈a+〉, f).

– Updating a variable from the variable environment. Rule [D−ASSGN2] checks
whether the new location δ=(r1, o1) assigned to a variable is live, namely its re-
gion is in the current store, r1∈dom(�).

– Deallocation of a region. Rule [D−RETR2] checks whether the region a is on the
top of the store stack. Then it checks whether a reference to a does not escape
neither through the value result δ, nor through the program variable environment
Π , nor through the object values of the store �. Note that when a new region is
allocated, in rule [D−LETR], a fresh region name is used in order to avoid region
name duplication in the store.

A Formal Soundness Proof of Region-Based Memory Management 139

– Calling a method. Rule [D−INVOKE] checks whether the method’s region argu-
ments are in the current store and then prepares the variable environment for the
method’s body execution.

The corresponding rules [D−NEW−DANGLERR], [D−ASSGN3−DANGLERR],
[D−ASSGN2 −DANGLERR], [D−RETR2−DANGLERR], and [D−INVOKE−DANGLERR]
generate a danglingerr error due to the failure of their runtime checks. In the rules
[D−ASSGN2], [D−ASSGN3], and [D−LOOP2] the result () denotes the singleton value of
type void. Note that the type void is assumed to be isomorphic to type unit. In rule
[D−EB], the locally declared variable is assigned, with the help of the function init, an
initial value according to its type as follows:

init(t) =def case t of
boolean → false
int → 0
cn〈r1..n〉 → null

5 Extended Static Semantics

In this section we extend our static semantics rules from Section 3 to include the new
intermediate constructions introduced by the small-step dynamic semantics rules in
Section 4.

First we define a valid program using a novel syntactic condition valid(e), that re-
stricts the places where the intermediate constructions may occur in a program.

Definition 3. (valid program)

1. A program is a valid program if all the program’s classes are valid classes.
2. A class is a valid class if all the class’s methods are valid methods.
3. A method is a valid method if the method’s body e is a valid block expression such

that retvars(e)=∅ and retregs(e)=∅.
4. Expression e is a valid expression if the predicate valid(e) holds, where valid(e) is

defined as follows:
valid(e) =def case e of
{(t v) e} → retvars(e)=∅ ∧ retregs(e)=∅
lhs = e → retvars(e)∩vars(lhs)=∅ ∧ valid(e)
e1 ; e2 → retregs(e2)=∅ ∧ retvars(e2)=∅ ∧ valid(e1)

∧retvars(e1)∩vars(e2)=∅ ∧ retregs(e1)∩regs(e2)=∅
if v then e1 else e2 → retregs(e1)=∅ ∧ retvars(e1)=∅

∧retregs(e2)=∅ ∧ retvars(e2)=∅
while v e | letreg r in e → retregs(e)=∅ ∧ retvars(e)=∅
ret(v, e) → v �∈ retvars(e) ∧ valid(e)
retr(r, e) → r �∈ retregs(e) ∧ valid(e)
otherwise → true

This condition does not restrict source-level region calculus, since intermediate con-
structions are generated during the program evaluation. A source language Core-Java
program is by default a valid program since it does not contain any intermediate ex-
pression. The above condition is based on the functions vars(e), retvars(e), regs(e), and
retregs(e) which are defined as follows:

140 F. Craciun, S. Qin, and W.-N. Chin

Definition 4. 1. The function vars(e) computes the set of all program variables which
occur in the expression e, excepting those variables introduced by e’s block subex-
pressions, as follows:

vars(e) =def case e of
ret(v, e) → {v} ∪ vars(e)
{(t v) e} → vars(e) \ {v}
retr(r, e) | letreg r in e → vars(e)
v.f = e | v = e | while v e → {v} ∪ vars(e)
v.f | v → {v}
if v then e1 else e2 → {v} ∪ vars(e1) ∪ vars(e2)
e1 ; e2 → vars(e1) ∪ vars(e2)
new cn〈r+〉(v∗) → {v∗}
v.mn〈v∗〉(v∗) → {v} ∪ {v∗}
otherwise → ∅

2. The function retvars(e) computes the set of all program variables which occur in the
ret subexpressions of the expression e, as follows:

retvars(e) =def case e of
ret(v, e) → {v} ∪ retvars(e)
retr(r, e) | v.f = e | v = e | {(t v) e} → retvars(e)
while v e | letreg r in e → retvars(e)
e1 ; e2 | if v then e1 else e2 → retvars(e1) ∪ retvars(e2)
otherwise → ∅

3. The function regs(e) computes the set of all region variables which occur in the
expression e, excepting those regions introduced by e’s letreg subexpressions, as
follows:

regs(e) =def case e of
{(t v) e} → reg(t) ∪ regs(e)
retr(r, e) → {r} ∪ regs(e)
letreg r in e → regs(e) \ {r}
ret(v, e) | v.f = e | v = e | while v e → regs(e)
(r, o) → {r}
if v then e1 else e2 | e1 ; e2 → regs(e1) ∪ regs(e2)
new cn〈r+〉(v∗) | v.mn〈r+〉(v∗) → {r+}
otherwise → ∅

where reg(t) is defined in the Figure 6.
4. The function retregs(e) computes the set of all region variables which occur in the

retr subexpressions of the expression e, as follows:

retregs(e) =def case e of
retr(r, e) → {r} ∪ retregs(e)
ret(v, e) | v.f = e | v = e | {(t v) e} → retregs(e)
while v e | letreg r in e → retregs(e)
e1 ; e2 | if v then e1 else e2 → retregs(e1) ∪ retregs(e2)
otherwise → ∅

A Formal Soundness Proof of Region-Based Memory Management 141

In order to describe the type of each location, we introduce a store typing. This ensures
that objects created in the store during run-time are type-wise consistent with those
captured by the static semantics. Store typing is conventionally used to link static and
dynamic semantics [20]. In our case, it is denoted by Σ, as follows:

Σ ∈ StoreType = RegVar⇀finOffset ⇀fin Type

The judgments of static semantics are extended with store typing, as follows:

P; Γ ; R; ϕ; Σ � e : t

For a store typing Σ : R⇀finO⇀finType, a region r, a location (r, o), and a type t we also
introduce the following notations:

dom(Σ)=R Σ(r)(o)=f(o), where f=Σ(r)
location dom(Σ)=def{(r, o) | r∈dom(Σ) ∧ f=Σ(r) ∧ f �=∅ ∧ o∈dom(f)}
Σ−r=defΣ1 such that Σ1 : (R−{r})⇀finO⇀finType ∧ ∀r′∈(R−r) ·Σ1(r

′)=Σ(r′)
Σ+r=defΣ2 such that Σ2 : (R∪{r})⇀finO⇀finType ∧Σ2(r)=∅ ∧ ∀r′∈R ·Σ2(r

′)=Σ(r′)
Σ−(r, o)=defΣ3 such that Σ3 : R⇀finO⇀finType

∧r∈R ∧Σ3(r)=Σ(r)−{o} ∧ ∀r′∈(R−r) ·Σ3(r
′)=Σ(r′)

Σ+((r, o) : t)=defΣ4 such that Σ4 : R⇀finO⇀finType
∧r∈R ∧Σ4(r)=Σ(r)+{o�→t} ∧ ∀r′∈(R−r) ·Σ4(r

′)=Σ(r′)

The judgments of the new intermediate expressions are presented in Fig. 9. They as-
sume that the expressions are valid with respect to the Definition 3. The first two rules
[RC−LOCATION] and [RC−ObjVal] are used to type the store, either a location or an ob-
ject value (i.e. a location’s content). Rule [RC−ObjVal] preserves the same invariants as
those of the rule [RC−NEW]. Rule [RC−RET] ensures that the variable to be popped off,
v is in the current environment Γ . The subsumption rule [SUBSUMPTION] simplifies the
next theorems and their proofs.

Rule [RC−RETR] is similar to rule [RC−LETR], but it takes into account the evaluation
of the expression retr(r, e). The first check ensures that the region to be deallocated,

[RC−LOCATION]

r∈R Σ(r)(o) = t

P; Γ ; R; ϕ; Σ � (r, o) : t

[RC−ObjVal]
P; R; ϕ �type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

P; Γ ; R; ϕ; Σ � V(fi) : t′i P; R; ϕ � t′i <: ti i=1..p

P; Γ ; R; ϕ; Σ � cn〈r1..n〉(V) : cn〈r1..n〉

[RC−RET]
v∈Γ P; Γ ; R; ϕ; Σ � e : t

P; Γ ; R; ϕ; Σ � ret(v, e) : t

[SUBSUMPTION]
P; Γ ; R; ϕ; Σ � e : t′ P; R; ϕ � t′ <: t

P; Γ ; R; ϕ; Σ � e : t

[RC−RETR]
a∈R Rt=R−lreg(e)−{a} ϕ⇒

V
r∈Rt

(r�a)

reg(t)⊆Rt reg(Γ−lvar(e)) ⊆ Rt P; Γ ; R; ϕ; Σ � e : t

P; Γ ; R; ϕ; Σ � retr(a, e) : t

Fig. 9. Region Type Checking Rules for Valid Intermediate Expressions

142 F. Craciun, S. Qin, and W.-N. Chin

a is in R. The Rt denotes the regions from R which are different than a and are not
younger than a. Note that lreg(e) denotes the regions which are younger than a. The
second check ensures that our type system uses only lexically scoped regions such that
the region to be deallocated, a is always on the top of the regions stack. The third and
the fourth check ensure that the region a and the regions younger than a do not escape
either through the result or through the live variables of the type environment. Note that
lvar(e) denotes the local variables of the expression e which are deallocated from the
variable environment during the evaluation of e.

The rules from Fig. 9 are using the functions lvar(e), lreg(e), and lloc(e) which are
defined as follows:

Definition 5. Using the evaluation rules from Fig. 7 and Fig. 8

1. The function lvar(e) estimates the set of variables which may be popped off from the
variable environment Π during the evaluation of the valid expression e (note that
only ret(v, e) may affect Π), as follows:

lvar(e) =def case e of
ret(v, e) → {v} ∪ lvar(e)
retr(r, e) | lhs = e | e ; e1 → lvar(e)
otherwise → ∅

2. The function lreg(e) estimates the set of regions which may be popped off from the
store � during the evaluation of the valid expression e (note that only retr(r, e)
may affect �), as follows:

lreg(e) =def case e of
retr(r, e) → {r} ∪ lreg(e)
ret(v, e) | lhs = e | e ; e1 → lreg(e)
otherwise → ∅

3. The function lloc(e) estimates the new location which may be created into an exist-
ing region during one evaluation step of the valid expression e (note that only new
may create a new location), as follows:

lloc(e) =def case e of
new cn〈r1, .., rn〉(v∗) → {(r1, o)}
ret(v, e) | retr(r, e) | lhs = e | e ; e1 → lloc(e)
otherwise → ∅

where the offset o of the region r is the offset where the next allocation in r is done.

6 Soundness Theorems

In this section we prove the soundness of our region calculus, namely that a valid pro-
gram well-typed by our type system never creates dangling references. We use a syn-
tactic proof method [25], based on a subject reduction theorem and a progress theorem.

First we define the consistency relationship between the static and dynamic seman-
tics, namely a relationship between what we can estimate at compile-time and what can
happen during run-time execution.

A Formal Soundness Proof of Region-Based Memory Management 143

Definition 6. (consistency relationship)
A run-time environment (�,Π) is consistent with a static environment (Γ, R, ϕ, Σ),

written Γ, R, ϕ, Σ � 〈�, Π〉, if the following judgment holds:

dom(Γ)=dom(Π) ∀v ∈ dom(Π) · P; Γ ; R; ϕ; Σ � Π(v) : Γ (v) reg(Γ)⊆R
location dom(Σ)=location dom(�) dom(Σ)=dom(�) R=dom(�)

ord(�)⇒ϕ ∀(r, o)∈location dom(�) · P; Γ ; R; ϕ; Σ � �(r)(o) : Σ(r)(o)

Note that �(r)(o) returns an object value cn〈r∗〉(V) whose type is cn〈r∗〉. In our instru-
mented operational semantics an object value and its type are stored together.

The subject reduction theorem ensures that the region type is preserved during the
execution of a valid program, as follows:

Theorem 1. (Subject Reduction): If

valid(e) P; Γ ; R; ϕ; Σ � e : t
Γ, R, ϕ, Σ � 〈�,Π〉

〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′]

then there exist Σ′, Γ ′, R′, and ϕ′, such that

(Σ′−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′))
Γ ′−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′))
R′−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′))
ϕ′−(lreg(e′)−lreg(e))⇒ ϕ−(lreg(e)−lreg(e′))

Γ ′, R′, ϕ′, Σ′ � 〈�′, Π ′〉
valid(e′) P; Γ ′; R′; ϕ′; Σ′ � e′ : t.

Proof: By structural induction on e. The detailed proof is in [11].

Although the hypothesis of the above theorem contains an evaluation relation, the proof
does not use the run-time checks associated with the evaluation rules to prove that
the result of the evaluation (result and dynamic environment) is well-typed, valid and
consistent.

The progress theorem guarantees that the execution of a valid program cannot gen-
erate danglingerr errors, by proving that those run-time checks are redundant for a
well-typed valid program (the run-time checks are proved by the static semantics).

Theorem 2. (Progress) If

valid(e) P; Γ ; R; ϕ; Σ � e : t
Γ, R, ϕ, Σ � 〈�,Π〉

then either

• e is a value, or
• 〈�,Π〉[e]↪→nullerr or
• there exist �′, Π ′, e′ such that 〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′].

Proof: By induction over the depth of the type derivation for expression e. The detailed
proof is in [11].

We conclude with the following soundness theorem for region annotated Core-Java.
The theorem states that if a valid program is well-typed and is evaluated in a run-time

144 F. Craciun, S. Qin, and W.-N. Chin

environment consistent with the static environment, the result of a finite number of
reduction steps (denoted by ↪→∗) is (1) either an error different from a dangling error,
(2) or a value, (3) or that the program diverges (namely after a finite number of reduction
steps there still exists one more reduction step). The evaluation never reports dangling
errors, namely the program never creates dangling references.

Theorem 3. (Soundness) Given a well-typed valid Core-Java program P=def∗ and
the main function (void main(void){e0})∈P, where e0 is a well-typed valid closed term
(without free regions and free variables), such that retvars(e0)=∅ ∧ retregs(e0)=∅ and
P; Γ0; R0; ϕ0; Σ0 � e0 : void, where Γ0=∅, R0=∅, ϕ0=true, and Σ0=∅ . Starting
from the initial run-time environment 〈�0, Π0〉, where �0=[], Π0=∅, such that
Γ0, R0, ϕ0, Σ0 � 〈�0, Π0〉. Then either

〈�0, Π0〉[e0] ↪→∗ nullerr (1)

or there exist a store �, a variable environment Π , a value δ, a type environment Γ , a
set of regions R, a region constraint ϕ, a store typing Σ such that

〈�0, Π0〉[e0] ↪→∗ 〈�, Π〉[δ] Γ, R, ϕ, Σ � 〈�,Π〉 P; Γ ; R; ϕ; Σ � δ : void (2)

or for a store �, a variable environment Π , a valid expression e, a type environment Γ ,
a set of regions R, a region constraint ϕ, a store typing Σ such that

〈�0, Π0〉[e0] ↪→∗ 〈�, Π〉[e] Γ, R, ϕ, Σ � 〈�,Π〉 P; Γ ; R; ϕ; Σ � e : void valid(e)

there exist a store �′, a variable environment Π ′, an expression e′, a type environment
Γ ′, a set of regions R′, a region constraint ϕ′, a store typing Σ′ such that

〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′] Γ ′,R′,ϕ′,Σ′ � 〈�′, Π ′〉 P;Γ ′;R′;ϕ′;Σ′�e′:void valid(e′) (3)

Proof: The proof is an induction on the number of the reduction steps. We can repeat-
edly use the progress theorem (Theorem 2) to prove that there is a reduction step and
then the preservation theorem (Theorem 1) to prove that the run-time environment after
evaluation is still well-typed and the evaluation result is valid.

7 Conclusion

We have considered a region calculus consisting of an object-oriented core language
annotated with regions. We have defined the dynamic semantics for our region calculus
based on a simpler small-step rewriting relation. Some of the region calculus construc-
tions (e.g. letreg) are firstly evaluated to intermediate constructions. Therefore the
static semantics must also be extended to include these new intermediate constructions.
We have used a novel syntactic condition (valid(e)) to restrict the places where the
intermediate constructions may occur in a program. This condition does not restrict
source-level region calculus, since intermediate constructions are generated during the
program evaluation. Our dynamic semantics is instrumented with runtime checks to
guarantee that a special danglingerr error is reported whenever the program eval-
uation tries to create a dangling reference. We have defined an important consistency
relationship between the static and dynamic semantics. A store typing technique is used

A Formal Soundness Proof of Region-Based Memory Management 145

to ensure that objects created in the store during run-time are type-wise consistent with
those captured by the static semantics. We have proven the soundness of the region cal-
culus by using a syntactic proof method [25], based on subject reduction and progress.
The subject reduction theorem ensures that the region type of a valid program is pre-
served during the evaluation. The progress theorem guarantees that the evaluation of a
valid program cannot generate danglingerr errors (namely those runtime checks are
redundant for a well-typed valid program). We have proven both theorems in a modular
fashion using just a simple induction. This simple soundness proof adds confidence to
our region-based memory inference and execution systems.

References

1. Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low overhead and
consistent utilization. In: POPL, pp. 285–298 (2003)

2. Birkedal, L., Tofte, M.: A constraint-based region inference algorithm. Theoretical Computer
Science 258(1–2), 299–392 (2001)

3. Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J., Hardin, D., Turnbull, M.: The Real-
Time Specification for Java. Addison-Wesley, Reading (2000)

4. Boudol, G.: Typing safe deallocation. In: European Symposium on Programming (ESOP),
pp. 116–130 (2008)

5. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership Types for Safe Region-Based
Memory Management in Real-Time Java. In: ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 324–337 (2003)

6. Calcagno, C.: Stratified operational semantics for safety and correctness of the region calcu-
lus. In: ACM Symposium on Principles of Programming Languages (POPL), pp. 155–165
(2001)

7. Calcagno, C., Helsen, S., Thiemann, P.: Syntactic type soundness results for the region cal-
culus. Information and Computation 173(2), 199–221 (2002)

8. Chin, W.-N., Craciun, F., Qin, S., Rinard, M.C.: Region inference for an object-oriented lan-
guage. In: ACM Conference on Programming Language Design and Implementation (PLDI),
pp. 243–254 (2004)

9. Christiansen, M.V., Velschow, P.: Region-Based Memory Management in Java. Master’s The-
sis, Department of Computer Science (DIKU), University of Copenhagen (1998)

10. Craciun, F., Goh, H.Y., Chin, W.-N.: A framework for object-oriented program analyses via
Core-Java. In: IEEE International Conference on Intelligent Computer Communication and
Processing (ICCP), Cluj-Napoca, Romania, pp. 197–205 (2006)

11. Craciun, F., Qin, S., Chin, W.-N.: A Formal Soundness Proof of Region-based Memory Man-
agement for Object-Oriented Paradigm. Technical report, Department of Computer Science,
Durham University, UK (April 2008),
http://www.durham.ac.uk/shengchao.qin/papers/reg cal proof.pdf

12. Elsman, M.: Garbage collection safety for region-based memory management. In: ACM
Workshop on Types in Language Design and Implementation (TLDI), pp. 123–134 (2003)

13. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-Based Mem-
ory Management in Cyclone. In: ACM Conference on Programming Language Design and
Implementation (PLDI), pp. 282–293 (2002)

14. Helsen, S.: Region-Based Program Specialization. PhD thesis, Universität Freiburg (2002)
15. Helsen, S., Thiemann, P.: Syntactic type soundness for the region calculus. Electronic Notes

in Theoretical Computer Science 41(3) (2000)

http://www.durham.ac.uk/shengchao.qin/papers/reg_cal_proof.pdf

146 F. Craciun, S. Qin, and W.-N. Chin

16. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A Minimal Core Calculus for Java
and GJ. In: ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 132–146 (1999)

17. Morrisett, G.: Compiling with Types. PhD thesis, Carnegie Mellon University (1995)
18. Morrisett, J.G., Felleisen, M., Harper, R.: Abstract Models of Memory Management. In:

ACM Conference Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA), pp. 66–77 (1995)

19. Niss, H.: Regions are imperative. Unscoped regions and control-sensitive memory manage-
ment. PhD thesis, University of Copenhagen (2002)

20. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)
21. Tofte, M., Birkedal, L.: A region inference algorithm. ACM Transactions on Programming

Languages and Systems (TOPLAS) 20(4), 734–767 (1998)
22. Tofte, M., Talpin, J.: Implementing the Call-By-Value λ-calculus Using a Stack of Regions.

In: ACM Symposium on Principles of Programming Languages (POPL), pp. 188–201 (1994)
23. Tofte, M., Talpin, J.: Region-based memory management. Information and Computa-

tion 132(2), 109–176 (1997)
24. Wilson, P.R.: Uniprocessor garbage collection techniques. In: International Workshop on

Memory Management (IWMM), pp. 1–42 (1992)
25. Wright, A.K., Felleisen, M.: A Syntactic Approach to Type Soundness. Information Compu-

tation 115(1), 38–94 (1994)

Program Models for Compositional Verification�

Marieke Huisman1, Irem Aktug2, and Dilian Gurov2

1 INRIA Sophia Antipolis, France
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. Compositional verification is crucial for guaranteeing the se-
curity of systems where new components can be loaded dynamically.
In earlier work, we developed a compositional verification principle for
control-flow properties of sequential control flow graphs with procedures.
This paper discusses how the principle can be generalised to richer pro-
gram models. We first present a generic program model, of which the
original program model is an instantiation, and explicate under what con-
ditions the compositional verification principle applies. We then present
two other example instantiations of the generic model: with exceptional
and with multi-threaded control flow, and show that for these particular
instantiations the conditions hold. The program models we present are
specifically tailored to our compositional verification principle; however,
they are sufficiently intuitive and standard to be useful on their own.
Tool support and practical application of the method are discussed.

1 Introduction

Compositional verification addresses the problem of proving the correctness of a
compound system based on properties of its components. Compositional verifica-
tion techniques allow one to guarantee that if the new applications satisfy certain
local requirements, the global security (policy) of the system is not violated. Such
techniques are crucial to ensure the security of any platform, where new appli-
cations can be installed dynamically. Typical application areas are e.g., mobile
computing, and dynamically reconfiguring distributed systems.

We are interested in both structural and behavioural control flow properties of
programs. A structural property is a property of the (finite) flow graph itself, such
as “every path from the entry of method m1 to a call instruction to method m2

passes a call instruction to method m3”. A behavioural property is a property of
the (infinite state) behaviour induced by the flow graph, such as“in any execution
of the program, method m1 calls method m2 at most once”.

In earlier work, we developed a compositional verification method for pro-
grams with procedures. Our method supports the following abstract compo-
sitional verification principle, where G1 and G2 are programs with procedures

� This work was funded in part by the IST programme of the EC, under the IST-FET-
2005-015905 MOBIUS project and under the IST-STREP-27004 S3MS project.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 147–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 M. Huisman, I. Aktug, and D. Gurov

(i.e., components), modelled as control flow graphs, and # denotes flow graph
composition:

G1 |= σ θIG1
(σ) # G2 |= φ

G1 # G2 |= φ
(1)

Informally, this rule says that to prove that the composition G1 # G2 satisfies
property φ, it is sufficient to find a “local” property σ of flow graph G1 (typi-
cally a still unavailable component) for which one can verify that: (i) σ indeed
holds for G1, and (ii) the local property ensures the global property. Task (i) is
deferred until component G1 becomes available. Task (ii) assumes knowledge of
the names of the provided and required methods of G1 (its so-called flow graph
interface IG1), and is achieved by constructing a maximal flow graph for the local
property, i.e., θIG1

(σ) and by showing that its composition with G2 satisfies φ. In
both tasks, the verifications can be performed algorithmically, using finite-state
and pushdown automata-based model checking, respectively.

A maximal flow graph w.r.t. a property σ is a flow graph that simulates all other
flow graphs satisfying property σ. This notion is based on the notion of maximal
model [9], but in addition takes the set of provided and required methods, i.e., the
flow graph interface, into account: a maximal flow graphonly simulates flowgraphs
with the same interface. Our technique requires the local requirement σ to be a
structural property, while the global requirement φ can be either a structural or a
behavioural property.This has the advantage that the approachworks for relatively
simple program models. All formulae are expressed in the fragment of the modal µ-
calculus [14]withboxes and greatest fixed-points only.Recently,we have developed
a translation from behavioural properties into structural ones [10]. This allows to
apply the compositional verificationprinciple also for local behavioural properties,
and thus to (indirectly) reuse the global guarantee as a local assumption for the
verification of a larger system. However, in this paper, we do not further discuss
this, and we simply assume all local properties to be structural.

We have shown soundness and completeness of the compositional verifica-
tion principle for a basic program model, only considering sequential control
flow. This paper discusses under what conditions the principle can be used with
finer, more complex program models. For this, we first present a generic pro-
gram model, and then explicate the conditions that have to be satisfied by each
concrete instantiation. To illustrate the approach, we present two concrete in-
stantiations, one extending the basic program model with exceptional control
flow and one with multi-threaded control flow. These finer program models are
especially tailored to satisfy the above-mentioned conditions, but are intuitive
enough to be useful on their own. In addition, we illustrate how extending the
program model allows to express (and verify) more complex program properties.

To support our compositional verification method we have developed a tool
set. Originally, this was tailored to the basic program model. The basic version of
the tool set has been used to demonstrate utility of the method on an industrial
smart card case study [11]. This paper contains an overview of the tool set and
describes how various parts of it are adapted to support the new instantiations.

Program Models for Compositional Verification 149

Related Work. The maximal model technique for compositional verification is
originally developed by Grumberg and Long [9] for the universal fragment of CTL,
and later generalised by Kupferman and Vardi [15] for ACTL*. We have adapted
the technique to the fragment of the modal µ-calculus with boxes and greatest
fixed-points [11]. Our original program model has been inspired by the one of
Besson et al. [2], who address the problem of verifying stack invariants of Java
programs. The model of Recursive State Machines, proposed by Alur et al. [1]
is also close to ours, while somewhat finer. However, the authors do not address
compositional verification of programs with recursion. Still other models exist for
capturing the control flow of applications in Java-like languages, see e.g., [18].
However, because of the specific requirements of our compositional verification
technique, we cannot directly reuse these models, and instead rely on our own.
Several tools exist for the (non-compositional) verification of behavioural program
properties. For example, Moped [13,7] and Alfred [20] encode the behaviour of a
program as a pushdown system, that is model checked. In particular, the jMoped
variation [23] translates Java bytecode to a pushdown system extended with a set
of variables, where instructions are directly mapped to transitions of the system.
Also closely related is the two-step extraction technique of Obdržálek [19], where
a control flow graph of the program is produced first, and the pushdown system is
then generated from this graph. However, neither of these translations addresses
multi-threading. Further, existing model checkers for multi-threaded Java (such
as Bogor1 and JavaPathFinder2) typically use an implicit program representation
that is close to the program itself. Then, abstraction is applied to make verification
feasible. In contrast, our programmodel directly abstracts the programbehaviour;
without this abstraction a maximal flow graph cannot be constructed.

Overview of the paper. Section 2 describes the generic framework for compo-
sitional verification, and shows how our original program model is an instance
of this. Sections 3 and 4 describe instantiations with exceptional control flow,
and with multi-threaded control flow. Finally, Section 5 draws conclusions and
discusses other possible instantiations.

2 A Framework for Compositional Verification

This section presents a method for compositional verification of control flow
properties based on a generic program model, identifies sufficient conditions for
soundness and completeness of the method, instantiates the generic model to the
basic model used in [11], and also outlines the tool set supporting this method.

2.1 Program Model

As the basis for our program model, we use a general notion of specification.
Both control flow graph structure and behaviour are defined in terms of such
specifications. For a detailed account of the basic definitions, we refer to [11].
1 See http://bogor.projects.cis.ksu.edu
2 See http://javapathfinder.sourceforge.net

150 M. Huisman, I. Aktug, and D. Gurov

Definition 1 (Specification). A model over a set of labels L and a set of
atomic propositions A is a structure M = (S, L,→, A, λ), where S is a set of
states, →⊆ S×L×S a labelled transition relation, and λ : S → P(A) a valuation
assigning to each state a set of atomic propositions. A specification S is a pair
(M, E), with M a model and E ⊆ S a set of entry states.

The reachable part of a specification S = (M, E) is defined by R(S) = (M′, E),
where M′ is obtained from M by deleting all states and transitions not reach-
able from E. The disjoint union of two specifications is defined by (M1, E1) #
(M2, E2) = (M1#M2, E1#E2), where M1#M2 = (S1#S2, L1∪L2, {ini(s)

a−→
ini(s′)|s a−→ s′ ∈ Mi}, A1∪A2, λ), where λ(ini(s)) = λi(s) and ini (for i ∈ {1, 2})
injects Si into S1#S2. The definition of simulation between specifications is stan-
dard. Notice that simulation is preserved by disjoint union.

S1 ≤ T1 ∧ S2 ≤ T2 ⇒ S1 # S2 ≤ T1 # T2 (2)

Let Meth be an infinite set of method names, and let Contr be a possibly in-
finite set of control values (disjoint from Meth) specific for each instantiation
of the model (in the program model with exceptions, for instance, it is a set of
exception names). Both sets should be disjoint from any reserved symbols. Ev-
ery control flow graph comes equipped with an interface, specifying the provided
and required methods, and the set of legal control values.

Definition 2 (Flow Graph Interface). A flow graph interface is a triple I =
(I+, I−, C), where I+, I− ⊆ Meth are finite sets of names of provided and
required methods, and C ⊆ Contr is a finite set of control values, respectively. We
say I is closed if I− ⊆ I+. The composition of two interfaces I1 = (I+

1 , I−1 , C1)
and I2 = (I+

2 , I−2 , C2) is defined by I1 ∪ I2 = (I+
1 ∪ I+

2 , I−1 ∪ I−2 , C1 ∪ C2).

The definition of control flow graph structure, or flow graphs for short, is also rel-
ativised on the notion of method specification, which is specific for each concrete
instantiation of the generic program model. We require a method specification
to be defined as an instance of the general notion of specification. Given such a
definition, one can formally define the notion of flow graph with interface.

Definition 3 (Flow Graph). Flow graphs G with interface I, written G : I,
are inductively defined by

– (Mm, Em) : ({m}, M, C) if (Mm, Em) is a method specification for m over
M and C,

– G1 # G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

A flow graph G : I is closed if its interface I is closed. We use ≤s to denote
structural simulation between flow graphs.

Basic Program Model. The compositional verification principle is originally de-
fined for an instance of the generic definition of flow graph, with Contr the empty
set. In this basic program model, method flow graphs are defined as follows.

Program Models for Compositional Verification 151

class Number {

}

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }

 return false;

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

evenodd

even, r reven, rr odd, odd,

Fig. 1. A simple Java class and its flow graph

Definition 4. (Method Specification) A flow graph for m ∈ Meth over a
set M ⊆ Meth is a finite model Mm = (Vm, Lm,→m, Am, λm), with Vm the set
of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and λm : Vm → P(Am), so
that m ∈ λm(v) for all v ∈ Vm (i.e., every node is tagged with its method name).
The nodes v ∈ Vm with r ∈ λm(v) are return points. A method specification for
m ∈ Meth over M is a pair (Mm, Em) s.t. Mm is a flow graph for m over M
and Em ⊆ Vm a non-empty set of entry points of m.

Thus, in this program model, a flow graph G : I is a model over I− ∪ {ε} and
I+ ∪ {r}.

Example 1. Figure 1 shows a simple Java class and the (simplified) flow graph
it induces in the basic program model. The flow graph consists of two method
specifications - one for method even and one for method odd. Entry nodes are
depicted as usual through edges without source.

2.2 Model Extraction

The tool set that we developed to support our compositional verification tech-
nique contains the Program Analyser (PA), that extracts flow graphs from Java
(bytecode) classes. One can always extract a flow graph that over-approximates
the actual behaviour as specified by the Java semantics; the precision of the over-
approximation depends on the precision of the static analysis used by PA. PA
is built on top of the Soot Java Optimization Framework [24]. Soot transforms
a bytecode program into Jimple basic blocks. Then, it makes a class hierarchy
analysis, producing a safe over-approximation of the application’s call graph.
For example, if the analysis cannot determine the receiver of a virtual method
call, a call edge is generated for every possible method implementation. Further,
Soot produces a control flow graph for each method, abstracting away all values.
PA transforms these, using information from the call graph, into flow graphs in
the format of the program model. Extending PA to the different instantiations
amounts to using additional information produced by Soot’s different analyses
when translating control flow graphs into flow graphs for the program model.

152 M. Huisman, I. Aktug, and D. Gurov

2.3 Flow Graph Behaviour

Next, we define the behaviour of flow graphs. Since the local guarantees must be
properties over the flow graph structure, we only have to define the behaviour
of closed flow graphs. The behaviour of a flow graph G, denoted b(G), should
also be defined as an instance of the general notion of specification. Also on
the behavioural level, we instantiate the definition of simulation ≤b: G1 ≤b G2 ⇔
b(G1) ≤ b(G2). For the compositional verification principle to apply for a concrete
program model, structural simulation should imply behavioural simulation:

G1 ≤s G2 ⇒ G1 ≤b G2 (3)

Basic Program Model The behaviour of the basic flow graphs (where Contr = ∅)
is defined as follows.

Definition 5. (Behaviour) Let G = (M, E) : (I+, I−) be a closed flow graph
such that M = (V, L,→, A, λ). The behaviour of G is described by the specifica-
tion b(G) = (Mb, Eb), where Mb = (Sb, Lb,→bs, Ab, λb), s.t. Sb = V × V ∗, that
is, states are configurations of control points and stacks, Lb = {m1 l m2 | l ∈
{call, ret}, m1, m2 ∈ I+} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v), and →bs is defined
as follows:

[transfer] (v, σ)
τ−→bs (v′, σ) if v

ε−→m v′, v |= ¬r

[call] (v1, σ)
m1 call m2−−−−−−→bs (v2, v

′
1 · σ) if m1, m2 ∈ I+, v1

m2−−→m1 v′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ)
m2 ret m1−−−−−−→bs (v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

The set of entry states Eb is defined by Eb = E×{ε}, where ε denotes the empty
sequence.

Example 2. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite-state behaviour. One example execution
of the program is represented by the following path from an initial to a final con-
figuration:

(v0, ε)
τ−→bs (v1, ε)

τ−→bs (v2, ε)
even call odd−−−−−−−→bs (v5, v3)

τ−→bs (v6, v3)
τ−→bs

(v7, v3)
odd call even−−−−−−−→bs (v0, v9 · v3)

τ−→bs (v1, v9 · v3)
τ−→bs

(v4, v9 · v3)
even ret odd−−−−−−−→bs (v9, v3)

odd ret even−−−−−−−→bs (v3, ε)

Basic flow graph behaviour can be viewed as the behaviour of a pushdown au-
tomaton (PDA). Thus, behavioural properties can be verified using PDA model
checking (see [5] for a survey of verification techniques for infinite-state systems).
Notice further that for basic flow graphs, structural simulation indeed implies
behavioural simulation (thus (3) holds), see [11].

Program Models for Compositional Verification 153

2.4 Properties over Flow Graphs

As property specification language, we use a fragment of the modal µ-calculus
[14] with boxes and greatest fixed-points only. A variety of useful safety prop-
erties of program control flow structure and behaviour are expressible in this
fragment, as illustrated in our earlier work [11]. Let L be a set of labels, A a set
of atomic propositions, and V a set of propositional variables.

Definition 6. (Logic) The formulae of our logic are inductively defined by:
φ ::= p | ¬p | X | φ1 ∧φ2 | φ1 ∨φ2 | [a] φ | νX.φ, where p ∈ A, a ∈ L and X ∈ V .

Satisfaction of the logic is defined in terms of the general notion of specification
in the standard way [14]. We use |=s and |=b to denote instantiation at the
structural and behavioural level, respectively: G |=s φ ⇔ G |= φ, and G |=b φ ⇔
b(G) |= φ.

Example 3. For the flow graph in the basic program model from Example 1, the
structural formula νX. [even] r∧ [odd] r∧ [ε] X expresses the property “on every
path from a program entry node, the first encountered call edge leads to a return
node”, in effect specifying that the program is tail-recursive. The behavioural
formula ¬even ∨ νX. [even call even] ff ∧ [τ] X expresses the property “in every
program execution that starts in method even, the first call is not to method
even itself”.

Due to the close correspondence between logical satisfaction and simulation, this
logic is particularly suited for our compositional verification technique: there ex-
ists a mapping χ from finite specifications to formulae, and a mapping (maximal
model construction) θ from formulae to finite specifications, such that for any
specifications S,S1 and finite S2 (see [11, Ths. 8, 15]):

S1 ≤ S2 ⇔ S1 |= χ(S2) and S |= φ ⇔ S ≤ θ(φ) (4)

2.5 Interface Characterisation

As mentioned above, our compositional verification technique is based on the
construction of maximal models. However, for a given flow graph property, the
maximal model does not necessarily correspond to a legal flow graph structure.
Still, if for an interface I we can formulate a characteristic formula that precisely
defines all legal flow structures with interface I, then we can use this formula
to constrain maximal models to legal flow graph structures. Concretely, if σI

is the characteristic formula for interface I, then the maximal flow graph for a
property σ is defined as the maximal model (over labels and atomic propositions
as induced by I) of the property σ∧σI . This describes a legal flow graph structure
with interface I, simulating all other flow graphs with interface I, satisfying σ.
Thus, for any instantiation of the general definition of flow graphs, to be able
to apply our compositional verification principle, we need to define a formula σI

that characterises all flow graphs with interface I, i.e.:

S |= σI ⇔ R(S) : I (5)

154 M. Huisman, I. Aktug, and D. Gurov

Basic Program Model. In the basic program model, flow graphs with interface I
are models over I−∪{ε} and I+∪{r} that can be characterised by the following
formula ([11, Th. 31]), essentially specifying that every state is labelled by a
unique method name that is preserved along edges:

σI =
∨

m∈I+ νX.Pm ∧ [I−, ε]X Pm = m ∧
∧

m′∈I+\{m} ¬m′

2.6 Compositional Verification

We can show that compositional verification principle (1) is sound and complete
for any instantiation of flow graphs, provided that: (i) the notions of method
specification and flow graph behaviour are defined as instances of the general
notion of specification, (ii) structural simulation implies behavioural simulation
(property (3)), and (iii) flow graphs with interface I can be characterised log-
ically (property (5)). Together with properties (2) and (4), these are sufficient
to prove soundness and completeness of the rule (see [11] for a detailed proof).
The compositional verification principle applies to the basic program model, as
shown in [11].

2.7 A Tool Set for Compositional Verification

In previous work [11], we implemented a tool set to support our compositional
verification method in the context of the basic program model presented in Sec-
tion 2.2. Figure 2 gives a general overview of its architecture.

For each component, we have as input either an implementation (in Java
bytecode), or a structural property restricting its possible implementations and
an interface specifying the provided and required methods. If we are given the
code of the implementation, we use the Program Analyser to extract a flow graph

Maximal
Model
Constructor

Flow Graphs

CWB

YES/NO

YES/NOStructural

Interface

Implementation

specification

Program
Analyser
(+ Inliner)

specification

Behavioural
PDA MC

Fig. 2. Tool Set for Compositional Verification

Program Models for Compositional Verification 155

(and if necessary, we use the Inliner to abstract the flow graph to public methods,
i.e., methods mentioned in the interface, only [11]). If we are given a structural
property, we construct a maximal flow graph as described in Section 2.5 using
the Maximal Model Constructor. Composition # of the the resulting flow graphs
basically amounts to a concatenation of the textual graph representations. The
tool set also implements translations of flow graphs into models which serve as
input for different model checkers. In order to check structural properties, we
exploit the fact that flow graphs can be viewed as finite Kripke structures, and
convert flow graphs to CCS models. Since structural properties are µ–calculus
formulae, the verification can then be done using standard model checking tools
such as the Concurrency Workbench (CWB) [6]. To verify that a composed
system respects a behavioural safety property, we view the behaviour of a flow
graph as an infinite state model generated by a Pushdown Automaton (PDA),
and apply PDA model checking. We are not aware of an efficient, off-the-shelf
model checker for (alternation–free) modal µ–calculus properties of PDAs. We
are currently developing one ourselves.

The extensions to the Program Analyser for handling exceptional and multi-
threaded control flow are described in the following sections. Extending the Max-
imal Model Constructor, Inliner and the translation into CCS and PDA models
is straightforward, and not discussed further.

The tool set has been evaluated on the PACAP case study [4], an electronic
purse developed for smart cards. In PACAP, a smart card may contain one purse
applet and several loyalty applets, which interact to exchange information. The
case study describes a potential “bad scenario” in terms of an illicit interaction
involving the purse applet and the loyalty applets, one of which is malicious.
Goal of the verification, presented in detail in [11], is to ensure the absence of
such illicit interactions for the given implementations of the purse and loyalties.

3 Instantiation: Exceptional Control Flow

As a first example of how the compositional verification principle can be instan-
tiated to richer program models, we present an instantiation with exceptions.
For this, we take Contr to be Excp, an infinite set of exception names, and we
define method specifications over M ⊆ Meth and E ⊆ Excp.

In a flow graph with exceptions, a control point may be tagged with an ex-
ception: the state is said to be exceptional if the current control point is tagged
with an exception (cf. having an exception at the top of the operand stack [16]).
Model extraction from actual bytecode models every instruction that might raise
an exception with several transfer edges, one leading to a normal and the oth-
ers leading to exceptional control points (for all possible exceptions). Explicit
throw statements are modelled as internal transfer edges that always lead to an
exceptional point. Catch statements are implicit: they are modelled as internal
transfer from an exceptional to a normal control point.

At behavioural level, the main difference with the basic model is that the
decision in which control point execution resumes after completion of a method

156 M. Huisman, I. Aktug, and D. Gurov

call is postponed to the time of return, depending on whether the method call
returns normally, or with an exception. Model extraction for a method that may
terminate with an exception produces multiple edges labelled with this method,
ending in control points tagged with exceptions, in addition to an edge that ends
in a normal control point. When a method is called, the set of all possible return
points (exceptional and normal) is pushed on the call stack (instead of a single
one), so that the appropriate control point can be selected upon return.

Below, we instantiate the compositional verification principle for flow graphs
with exceptions in such a way that conditions (i)-(iii) from Section 2.6 are met.
In particular, we define structure and behaviour appropriately. We also discuss
how model extraction is adapted, and we give typical example properties that
refer to the exceptional structure or behaviour of a flow graph.

3.1 Program Model with Exceptions

As mentioned above, we instantiate Contr with Excp. Interfaces of flow graphs
with exceptions are thus of the form (I+, I−, E), where E ⊆ Excp. We use IE to
extract the exception component from the interface.

Method specifications are very similar to method specifications in the basic
program model, except that we add exceptions as atomic propositions.

Definition 7. (Method Specification with Exceptions) A flow graph with
exceptions for m ∈ Meth over sets M ⊆ Meth and E ⊆ Excp is a finite
model Mm = (Vm, Lm,→m, Am, λm) with Vm the set of control nodes of m,
Lm = M ∪ {ε}, Am = {m, r} ∪ E, m ∈ λm(v) for all v ∈ Vm, and for all
e, e′ ∈ E, if {e, e′} ⊆ λm(v) then e = e′, i.e., each control point is tagged with at
most one exception. A method specification with exceptions for m ∈ Meth over
M and E is a specification (Mm, Em) s.t. Mm is a flow graph with exceptions
for m over M and E and Em ⊆ VM a non-empty set of entry points of m.

We use the following abbreviation: v |= E ⇔ ∃e ∈ E.v |= e. Method specifica-
tions with exceptions have to satisfy two wellformedness constraints: (1) entry
nodes are not exceptional: ∀v ∈ Em.v �|= IE ; and (2) all outgoing edges from
exceptional control points are internal transfer edges ending in a normal control
point: ∀v, v′ ∈ V, e ∈ IE , l ∈ Lm.v |= e ∧ v

l−→ v′ ⇒ l = ε ∧ v′ �|= IE . The second
constraint is not strictly necessary, but keeps the behaviour of flow graphs clean:
catching an exception always results in a normal state in the same method.
Throughout, we will assume all method specifications to be wellformed.

3.2 Extracting Flow Graphs with Exceptions from Java Classes

We extended the Program Analyser to handle exceptions. Explicit throw state-
ments give rise to internal transfer edges ending in an appropriately labelled
exceptional control point. All other instructions that might raise an exception
(such as accessing a reference, which can lead to a NullPointerException) are
modelled by a choice: the current control point has multiple outgoing edges la-
belled ε, one ending in a normal control point and all others ending in appropriate

Program Models for Compositional Verification 157

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

m1

m2

m3 m3

Exc2 Exc1

m6
m4

m6

Exc1

m3

m6

Exc1

m5

Exc1 Exc2

Exc1

m1

m6

finally { m6(); }

catch Exc1 { m5(); }

 }

 catch Exc1 { m4(); }

 try { m3(); }

try { m2();

m1();

m2
v1

v2 v3

v4

v5

v6

Fig. 3. Example extraction for a try-catch-finally statement

exceptional control points. To model method invocations, edges are labelled ei-
ther ε, modelling the case that the invocation instruction raises an exception, or
with the method name. At most one of the edges labelled with the method name
ends in a normal control point, modelling normal termination of the method, all
others lead to an exceptional control point, corresponding to exceptional returns
from the method. The exceptional control points are either tagged with an ex-
ception listed in the method’s throw clause, or with a runtime exception that
can be thrown (and not caught) in the method. The analysis which exceptions
might be returned by a method is transitive w.r.t. the call graph.

To illustrate how PA extracts a flow graph from a try-catch-finally block,
Figure 3 shows an example code fragment3 together with the corresponding
flow graph. We assume that Exc1 and Exc2 are the only exceptions; m1, m2 and
m3 and m6 can throw Exc1, while m3 can also throw Exc2. (For presentation
purposes, some nodes are named.) A try-catch is modelled by branches in the
control flow: each instruction in the try-block that could raise an exception has an
outgoing edge to an exceptional control point (e.g., the call to m2 in v1 can lead
to normal point v3, or to exception point v2). If the exception is handled by one
of the catch clauses, the only outgoing edge from this point leads to the control
flow of the corresponding clause. For example, in v2, the exception is caught
by the outer catch clause, leading to a call of m5. All edges that correspond to
normal termination of the try-catch (i.e., termination of the try-block, and
termination of all catch-clauses) lead to the same control point, where the flow
graph modelling the next instruction starts. If the try-catch block is followed
by a finally-clause, at each possible exit of the try-catch block (e.g., nodes
v4 and v5 in Figure 3), the graph extracted for the finally clause is inserted. In
case the try-catch block ended with an exception, the exception is saved until
the end nodes of the graph of the finally clause, thus the internal nodes of the
finally graph are not tagged with this exception. However if an end node of
the finally graph is normal, an edge is added to rethrow the exception. For
example, if the call to m6 in v5 ends normally in v6, then Exc2 is re-thrown.

3 For illustrative purposes, the extraction is described in terms of source code, however
the actual implementation works on bytecode.

158 M. Huisman, I. Aktug, and D. Gurov

The end node of a finally clause can thus be either normal, tagged with an
exception thrown in the finally block or with the exception inherited from the
try-catch block (in case no exception is thrown by the finally block itself).

In order to see the results of graph extraction on a realistic piece of software,
we analysed a simulation application built on top of the JavaSim library, a tool
for building discrete event process-based simulation4. We considered 140 types
of exceptions, checked as well as unchecked, all subtypes of class Exception. The
exceptional control flow graph includes 55 methods in 14 classes (approximately
640 lines of code), of which 7 classes belong to the JavaSim library. On a Pen-
tium4 2.2GHz computer with 512MB memory pool, the call graph construction
takes 3 minutes, and can be decreased substantially by instrumenting Soot to
prevent the analysis of Java API methods. It takes 1,5 seconds to create the
control flow graph, which contains 1450 nodes and 1466 edges.

3.3 Flow Graph Behaviour with Exceptions

Modelling the behaviour of flow graphs with exceptions requires a different use of
the call stack than in the basic program model. In that model, the return point
is determined and pushed on the call stack at the time the method is called.
But when modelling exceptional behaviour, it cannot be predicted at call time
whether termination will be normal or exceptional. Therefore, the call transition
pushes the set of all possible return points on the call stack, and the return
transition selects the appropriate one, i.e., with the matching exception (if any).
In addition, we introduce transition labels throwe and catche; this makes raising
and recovering from exceptions observable for specification purposes.

Definition 8 (Behaviour with Exceptions). Let G = (M, E) : I be a closed
flow graph with exceptions such that M = (V, L,→, A, λ). The behaviour of G is
described by the specification b(G) = (Mb, Eb), where Mb = (Sb, Lb,→be, Ab, λb)
s.t. Sb ∈ V × (P(V)\{∅})∗, i.e., states are pairs of control points and stacks of
non-empty sets of nodes, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {τ} ∪
{l e | l ∈ {throw, catch}, e ∈ IE}, Ab = A, λb((v, σ)) = λ(v) and →be is defined
as follows:

[transfer] (v, σ)
τ−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r, v �|= IE , v′ �|= IE

[call] (v1, σ)
m1 call m2−−−−−−→be (v2, V · σ) if m1, m2 ∈ I+, v1 |= ¬r, v1 �|= IE , v2 |= m2,

v2 ∈ E, V = {v | v1
m2−−→m1 v}, V �= ∅

[return] (v2, V · σ)
m2 ret m1−−−−−−→be (v1, σ) if m1, m2 ∈ I+, v1 |= m1, v2 |= m2 ∧ r,

v1 ∈ V , ∀e ∈ IE .v1 |= e ⇔ v2 |= e

[throw] (v, σ)
throw e−−−−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r, v′ |= e

[catch] (v, σ)
catch e−−−−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r ∧ e

The set of initial states Eb is defined by Eb = E × {ε}.
4 Available via the JavaSim homepage: http://javasim.ncl.ac.uk.

Program Models for Compositional Verification 159

As for the basic model, the behaviour of a flow graph with exceptions is the
behaviour of a PDA, and hence PDA model checkers can again be used for veri-
fication of behavioural properties. Since there is a close correspondence between
flow graph structure and behaviour, structural simulation between flow graphs
with exceptions implies their behavioural simulation (thus property (3) holds).

Theorem 1. Let G1 and G2 be flow graphs with exceptions. If G1 ≤s G2 then
G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define relation Rb

by (where |σ| denotes the length of σ, and σ(i) the ith element in σ):

(v, σ)Rb(v′, σ′) ⇔ vRv′ ∧ |σ| = |σ′| ∧ ∀i < |σ|.∀w ∈ σ(i).∃w′ ∈ σ′(i).wRw′

It is easy to check that Rb is a behavioural simulation between G1 and G2. �$

3.4 Properties over Flow Graphs with Exceptions

Modelling exceptional control flow of flow graphs not only allows to better ap-
proximate their behaviour, it also allows to express and verify properties that
are related to exceptions (both at structural and at behavioural level). Typical
properties of a flow graph with exceptions G : I expressible in our logic are:

– Exception e ∈ IE is never thrown: νX.¬e ∧ [−] X (where [K]φ abbreviates∧
a∈K [a]φ and ’−’ stands for L). Notice that this property can be expressed

both at structural and at behavioural level (but with a slightly different
meaning: at the behavioural level, recursion is taken into account, thus cer-
tain control points might never be reachable).

– Exception e ∈ IE is always caught within the method where it is thrown:
νX.(¬e∨¬r)∧[−] X (again, this property can be expressed both at structural
and behavioural level).

– After exception e ∈ IE is thrown, the first method that can be called is the
(state-restoring) method n ∈ I+: νX.(¬e ∨ νY. [M \ {n}]ff ∧ [ε]Y) ∧ [−] X .

It is natural to handle exceptions locally. Hence, in a compositional verification
setting, global behavioural specifications would typically not mention throwing
and catching of exceptions; these labels can instead be relabelled into silent
τ -transitions.

The tool set has also been extended to translate control flow graphs with
exceptions into CCS models. This has been used to produce the CCS model
corresponding to the graph extracted for the simulation application described
at the end of Section 3.2. Then, we used the Concurrency Workbench to verify
various local properties of the application. For instance, we checked whether ex-
ceptions are caught locally, i.e., within the method. For the finalize() method
of JavaSim’s SimulationProcess class, shown in Figure 4, and a particular
exception e, the property finalize ⇒ νX.(¬(e ∧ r)) ∧ [−]X specifies that ex-
ceptions of type e are caught locally. The instructions in the finalize()method
that may raise an exception are the calls to the virtual method idle(), the static

160 M. Huisman, I. Aktug, and D. Gurov

public void finalize () {

if (!Terminated) {

Terminated = true; Passivated = true;

wakeuptime = SimulationProcess.Never;

if (!idle()) Scheduler.unschedule(this);

if (this == SimulationProcess.Current) {

try { Scheduler.schedule(); }

catch (SimulationException e) { } }

SimulationProcess.allProcesses.Remove(this); }}

Fig. 4. The finalize() method of JavaSim’s SimulationProcess class

methods unschedule(), schedule(), Remove() and accesses to the fields Never,
and Current. All but one of these instructions raise only the NullPointerEx-
ception: the call to method schedule() might raise NullPointerException
and SimulationException, an application-defined exception. Model checking
the property succeeded for all exceptions e except for NullPointerException,
showing that not all exceptions are caught locally.

3.5 Interface Characterisation of Flow Graphs with Exceptions

Given an interface for a flow graph with exceptions I, we can characterise the
flow graphs with this interface by the formula σI , essentially stating that any
initial control point is normal, and after a transition, either the control point is
normal again, or we are in an exceptional point, where all outgoing edges are
internal transfer edges, leading to a normal control point:

σI =
∨

m∈I+(νX.Pm ∧
∧

e∈IE ¬e∧
[I−, ε] (X ∨ (

∧
m∈I+ [m] ff ∧Pm ∧

∨
e∈IE Pe ∧ [ε]X)))

Pm = m ∧
∧

m′∈I+\{m} ¬m′ Pe = e ∧
∧

e′∈IE\{e} ¬e′

The following result tells us that σI indeed characterises all flow graphs with
exceptions with interface I, thus (5) holds.

Theorem 2. Let I be an interface for flow graphs with exceptions. For any
specification S = (M, E) over labels L = I− ∪ {ε} and atomic propositions
A = I+∪{r}∪E we have (where R denotes the reachable part of a specification,
as defined on page 150): S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of Theorem 31 in [11]. �$

Because of this result and Theorem 1 the compositional verification principle (1)
also applies to flow graphs with exceptions.

4 Instantiation: Multi-threaded Control Flow

As a second example, we instantiate the generic program model with multi-
threaded control flow. In this case, the set of control values consists of lock and

Program Models for Compositional Verification 161

thread names, i.e., Contr = Lock×T id, where Lock and T id are infinite sets of
lock and thread names, respectively. Given an interface I, we use IL and IT to
extract the legal lock and thread names, respectively.

Our program model supports all basic thread constructs as provided by Java:
thread creation, monitors, a wait-notify mechanism, and the possibility to join a
thread (i.e., wait for its completion). The behaviour of this instantiation extends
the behaviour of the basic program model, by maintaining a configuration for
each thread. We assume that (the interleaving behaviours of) programs do not
contain data races and thus, by virtue of the Java Memory Model [17], we can
assume an interleaving semantics. Notice that the program model described in
this section can be easily combined with the program model described above
into a single program model with multi-threading and exceptions.

4.1 Program Model with Multi-threading

To define method specifications for multi-threaded programs, we introduce edge
labels that correspond to the instructions specific to multi-threading. Following
the Java semantics, the body of a method will be executed sequentially, possibly
starting new threads, interleaved with other threads. Let LM,L,T abbreviate the
set of labels M ∪ {ε} ∪ {c l | c ∈ {lock, unlock, wait, notify,notifyAll}, l ∈ L} ∪
{spawn t with m | t ∈ T , m ∈ M} ∪ {join t | t ∈ T}.
Definition 9. (Method Specification with Multi-threading) A flow graph
with multi-threaded control flow for m ∈ Meth over sets M ⊆ Meth, L ⊆ Lock
and T ⊆ T id is a finite model Mm = (Vm, LM,L,T ,→m, Am, λm) with Vm the
set of control nodes of m, Am = {m, r}, and m ∈ λm(v) for all v ∈ Vm. A
method specification with multi-threaded control flow for m ∈ Meth over M , L
and T is a specification (Mm, Em) with Mm a method graph with multi-threaded
control flow for m over M , L and T, and Em ⊆ Vm a non-empty set of entry
points of m.

4.2 Extracting Flow Graphs from Multi-threaded Java Classes

To extend the Program Analyser to multi-threaded classes, we generate edges
with appropriate labels for all (non-deprecated) Java primitives and native meth-
ods related to concurrency, with the exception of the timed wait and the interrupt
mechanism. For instance, calling the start (or fork) method on a thread ob-
ject, is modelled by an edge labelled spawn, while a call to join leads to an
edge labelled join. Special care is taken for calls to synchronized methods: they
are preceded and followed by edges labelled lock and unlock on the appropriate
object, i.e., the synchronisation is made explicit.

Special care has to be taken to ensure that the extracted sets of thread and lock
names are finite. For threads, a safe over-approximation is to use the declared
class name of the thread as thread name in the model. Using a more precise
analysis can help to distinguish different threads that are instances of the same
class. For locks, abstracting with the class name might under-approximate the
program behaviour. To overcome this problem, we require that the program has
only a finite number of lock objects with the same class name.

162 M. Huisman, I. Aktug, and D. Gurov

Table 1. Transition rules −→bm for multi-threaded behaviour

[exec.] (Σ, L, W)
(t,a)−−−→bm (Σ(t :=(v′, σ′)), L, W) if t �∈ W, Σ(t)

a−→bs (v′, σ′)

[coord.] (Σ, L, W)
(t,a)−−−→bm (Σ(t :=(v′, σ)), L′, W′) if Σ(t) = (v, σ),t �∈W, v

a−→m v′,

m ∈ I+, (L, W)
(t,a)−−−→c (L′, W′)

[resume] (Σ, L, W)
(t, resume l)−−−−−−−→bm (Σ, L′, W′) if (t , n, tt) ∈W(l), L′ = L(l:=(t , n)),

L(l) =⊥, W′ = W(l:=W(l)\(t , n, tt))

[thr.-ops.] (Σ, L, W)
(t,a)−−−→bm (Σ′(t :=((v′, σ)), L, W) if Σ(t) = (v, σ),t �∈W,

v
a−→m v′ m ∈ I+, Σ

a−→t Σ′

4.3 Flow Graph Behaviour with Multi-threading

The behaviour specification follows closely the Java Specification [16]. Instead of
a single call stack, we maintain a map from thread identifiers to configurations
(i.e., control point and call stack). If a thread is not active, it maps to ⊥. Further,
the state space also contains a lock map and a wait map. The lock map returns
for each lock the identity of the thread holding the lock and the lock counter
(i.e., how many times the lock is held, necessary to correctly model the reentrant
locking behaviour of Java). The wait map returns for each lock the set of threads
that are waiting for it, the number of times the thread was holding the lock when
it started waiting, and a flag whether the thread has been notified. This ensures
that the thread resumes in the exact same state as when it issued a wait, thus
making sure a correct number of unlocks is necessary to release the lock. We
explicitly require that if a thread is waiting for a lock, its state is active.

We assume execution starts in a special thread called main, and that any closed
flow graph contains such a thread. Labels and atomic propositions are paired
with thread identifiers. Further, we introduce the atomic proposition haslock(t , l)
to hold in any state where thread t holds lock l.

Definition 10. (Behaviour with Multi-threading) Let G = (M, E) : I be
a closed multi-threaded flow graph such that M = (V, L,→, A, λ). The multi-
threaded behaviour of G is described by the specification b(G) = (Mb, Eb), where
Mb = (Sb, Lb,→bm, Ab, λb) is defined as follows:

– Sb = {s ∈ (IT → (V × V ∗)⊥) × (IL → (IT × N)⊥)×
(IL → P(IT × N × B)) | ∀l, t , n, b.(t , n, b) ∈ π3(s)(l) ⇒ π1(s)(t) �=⊥},

– Lb = T × ({m1 c m2 | c ∈ {call, ret}, m1, m2 ∈ I+} ∪ {τ}∪
{c l | c ∈ {lock, unlock, wait, notify, notifyAll, resume}, l ∈ IL}∪
{spawn t with m | t ∈ IT , m ∈ I+} ∪ {join t | t ∈ IT }),

– →bm is defined in Table 15 (using auxiliary rules −→c and −→t of Table 2) ,
– Ab = (T × A) ∪ {haslock(t , l) | t ∈ IT , l ∈ IL}, and
– λb(s) = {(t , p) | t ∈ IT ∧ π1(s)(t) �=⊥ ∧ p ∈ λ(π1(π1(s)(t)))}∪

{haslock(t , l) | π2(s)(l) �=⊥ ∧ π1(π2(s)(l)) = t}.
5 We abbreviate ∃n, b, l.(t , n, b) ∈ W(l) as t ∈ W. We use f(i:=x) to denote function

update. Further, Σ(i) = (v, σ) implicitly implies that Σ(i) �=⊥.

Program Models for Compositional Verification 163

Table 2. Auxiliary transition rules −→c and −→t

[lock] (L, W)
(t,lock l)
−−−−−→c (L′, W) if L(l) =⊥, L′ = L(l:=(t , 1))

[re-lock] (L, W)
(t,lock l)
−−−−−→c (L′, W) if L(l) = (t , n), L′ = L(l:=(t , n))

[unlock] (L, W)
(t,unlock l)
−−−−−−→c (L′, W) if L′ = L(l:= (L(l) =⊥ ∨ L(l) = (t , 1)

⊥:
(π1(L(l)), π2(L(l)) − 1))

)?

[wait] (L, W)
(t,wait l)
−−−−−→c (L′, W′) if L(l) = (t , n), L′ = L(l:=⊥),

W′ = W(l:=W(l) ∪ {(t , n, ff)})

[notify] (L, W)
(t,notify l)
−−−−−−→c (L, W′) if L(l) = (t , n),(t ′, n, ff) ∈ W(l),

W′ = W(l:=W(l)\{(t ′, n, ff)} ∪ {(t ′, n, tt)})

[notify-cont] (L, W)
(t,notify l)
−−−−−−→c (L, W) if L(l) = (t , n),∀t ′.(t ′, n, ff) �∈ W(l)

[notifyAll] (L, W)
(t,notifyAll l)
−−−−−−−→c (L, W′) if L(l) = (t , n),

W′ = W(l:={(t ′, n, tt) | (t ′, n, r) ∈ W(l)})

[spawn] Σ
spawn t

′ with m′

−−−−−−−−−→t Σ′ if Σ(t ′) =⊥, m′ ∈ I+, v′′ ∈ E, v′′ |= m′, Σ′ = Σ(t ′:=(v′′, ε))

[join] Σ
join t

′

−−−→t Σ if Σ(t ′) = (v′′, ε), v′′ |= r

The set of initial states Eb is defined as Eb = {(Σv
I , λl. ⊥, λl.∅) | v ∈ E} where

Σv
I (main) = (v, ε,⊥) and Σv

I (t) =⊥ for all t ∈ IT .

The transition rules should be understood as follows. Rule [exec.] lifts the stan-
dard rules for sequential flow graphs (−→bs, Def. 5) to the multi-threaded case.
Rule [coord.] models the coordination of threads via locks, i.e., (un)lock, wait,
and notify(All): the current thread changes control point if the lock and wait
map can be updated appropriately, as defined by the auxiliary transition rules
−→c (see [12] for more explanation). Rule [thr.-ops.] models creating and join-
ing a thread using the auxiliary transition rules −→t (see also [12]). Finally, rule
[resume] handles the case where an thread is waiting on an object, has been
notified, and now continues execution.

Also in the case of multi-threaded flow graphs, there is a direct correspondence
between flow graph structure and behaviour, and thus structural simulation im-
plies behavioural simulation.

Theorem 3. Let G1 and G2 be flow graphs with multi-threading. If G1 ≤s G2

then G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define

(Σ, L, W)Rb(Σ′, L′, W′) ⇔
(∀t ∈ T . if Σ(t) = (v, σ)

then Σ′(t) = (v′, σ′) ∧ vRv′ ∧ |σ| = |σ′| ∧ ∀i.i < |σ|.σ(i)Rσ′(i)
else Σ′(t) =⊥) ∧ L = L′ ∧ W = W′

It is easy to check that Rb is a behavioural simulation between G1 and G2. �$

164 M. Huisman, I. Aktug, and D. Gurov

4.4 Properties over Flow Graphs with Multi-threading

The instantiation of the generic flow graph model with multi-threaded control
flow allows us to express properties that are related to the multi-threaded char-
acter of the flow graph. Given a flow graph G : I with multi-threaded control
flow, typical (behavioural) properties expressible in our logic are:

– Method m ∈ I+ can only be called by thread t , if t has lock l:
νX.

∧
t ∈ IT (haslock(t , l)∨

∧
m′∈I+ [(t , m′ call m)] ff)∧ [−] X . If method m is

the only method accessing some data, this means that data is lock protected.
– Locks are acquired in a particular order, for example lock l2 can only be

acquired by a thread that already has lock l1: νX.
∧

t∈IT (haslock(t , l1) ∨
[(t , lock l2)] ff)] ∧ [−]X . This guarantees absence of deadlocks by synchroni-
sation (however, it does not guarantee absence of deadlocks, caused by the
wait-notify mechanism, or by joining a non-terminating thread).

– No more than n threads are created in an application. This is an important
resource property. Formally, this can be expressed as MaxThr (n), inductively
defined as follows:

MaxThr (1) = νX1.
∧

m∈I+,t∈IT [spawn t with m]ff ∧ [−]X1

MaxThr (k + 1) = νXk+1.
∧

m∈I+,t∈IT [spawn t with m]MaxThr (k) ∧ [−] Xk+1

4.5 Interface Characterisation of Flow Graphs with Multi-threading

Given an interface for a flow graph with multi-threaded control flow I, the flow
graphs with this interface can be characterised by the formula σI , where LM,L,T

is as defined on Page 161:

σI =
∨

m∈I+(νX.Pm ∧
[
LI−,IL,IT

]
X) Pm = m ∧

∧
m′∈I+\{m} ¬m

Theorem 4. Let I be an interface for multi-threaded flow graphs. For any
specification S = (M, E) over labels I− ∪ {ε} ∪LM,L,T and atomic propositions
A = I+ ∪ {r} we have : S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of Theorem 31 in [11]. �$

Thus, the compositional verification principle (1) also applies to flow graphs with
multi-threading. However, applying the verification principle poses a problem to
model checking, since the verification problem resulting from the second premise,
θI(φ) # G2 |=b φ, is not decidable in general for the case of pushdown systems
with multiple stacks. This is a consequence of a basic undecidability result due to
Ramalingam [22], which is related to the undecidability of the problem of empti-
ness of intersection of context-free languages. Hence, every such model checking
algorithm must use an under- or over-approximation of the program behaviour.
Different approaches have been proposed, see e.g., [3,8,21]. It is future work to
study whether and how these solutions can be integrated into our framework.

Program Models for Compositional Verification 165

5 Conclusion

This paper discusses how a previously developed method for compositional ver-
ification of control-flow properties of sequential flow graphs with procedures can
be adapted to richer program models. We present a generic program model, of
which the original program model is an instantiation, and explicate the condi-
tions under which the compositional verification principle is sound and complete.
Two other example instantiations of this generic model are presented: with ex-
ceptional and with multi-threaded control flow. Also for these particular instan-
tiations, the compositional verification principle holds (noting, however, that in
the case of multi-threaded flow graphs we lose decidability due to a general un-
decidability result for pushdown systems with multiple stacks). The restrictions
on the instantiations required to ensure soundness and completeness of the prin-
ciple are not severe, and the resulting models are intuitive and standard – and
can thus be used for other analyses as well. It is future work to study other pos-
sibilities to enrich the program model, for example by adding data (from finite
domains), or access control information. We are currently adapting the tool set
to handle multi-threaded models.

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM TOPLAS 27, 786–818 (2005)

2. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security prop-
erties of control flow graphs. J. of Computer Security 9(3), 217–250 (2001)

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Notes 38(1), 62–73 (2003)

4. Bretagne, E., El Marouani, A., Girard, P., Lanet, J.-L.: PACAP purse and loyalty
specification. Technical Report V 0.4, Gemplus (2000)

5. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra,
pp. 545–623. North-Holland, Amsterdam (2000)

6. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: International Symposium on Protocol Specification, Testing and
Verification, pp. 287–302. North-Holland Publishing Co., Amsterdam (1990)

7. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

8. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: Principles of programming languages (POPL 2000), pp.
1–11. ACM Press, New York (2000)

9. Grumberg, O., Long, D.: Model checking and modular verification. ACM
TOPLAS 16(3), 843–871 (1994)

10. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. Technical Report TRITA-CSC-TCS 2007:3, KTH Royal Institute
of Technology, Stockholm (2007)

11. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

166 M. Huisman, I. Aktug, and D. Gurov

12. Huisman, M., Aktug, I., Gurov, D.: Flow graph behaviour for multi-threaded ap-
plications (2007), ftp://ftp-sop.inria.fr/everest/Marieke.Huisman/mt.pdf

13. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.:
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

14. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

15. Kupferman, O., Vardi, M.: An automata-theoretic approach to modular model
checking. ACM TOPLAS 22(1), 87–128 (2000)

16. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Sun
Microsystems, Inc. (1999)

17. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Principles of Pro-
gramming Languages (2005)

18. Méndez, M., Navas, J., Hermenegildo, M.V.: An efficient, parametric fixpoint al-
gorithm for analysis of Java bytecode. In: Huisman, M., Spoto, F. (eds.) Bytecode
2007, pp. 51–66 (2007)

19. Obdržálek, J.: Model checking Java using pushdown systems. In: Proceedings of
FTfJP 2002, Malaga, Available as Technical Report NIII-R0204, Computing Sci-
ence Department, University of Nijmegen (June 2002)

20. Polansky, D.: Implementation of the model checker for pushdown systems and
alternation-free mu-calculus. Master’s thesis, FI MU Brno (2000)

21. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

22. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM TOPLAS 22(2), 416–430 (2000)

23. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java bytecode checker
based on Moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 541–545. Springer, Heidelberg (2005)

24. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

ftp://ftp-sop.inria.fr/everest/Marieke.Huisman/mt.pdf
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

A Unified Model Checking Approach with

Projection Temporal Logic�

Zhenhua Duan and Cong Tian

Institute of Computing Theory and Technology, Xidian University,
Xi’an, 710071, P.R. China

{zhhduan,ctian}@mail.xidian.edu.cn

Abstract. This paper presents a unified model checking approach with
Projection Temporal Logic (PTL) based on Normal Form Graphs (NFGs).
To this end, a Modeling, Simulation and Verification Language (MSVL) is
defined based on PTL. Further, normal forms and NFGs for MSVL pro-
grams and Propositional PTL (PPTL) formulas are defined.The finiteness
for NFGs of MSVL programs is proved in details. Moreover, by modeling a
system with an MSVL program p, and specifying the desirable property of
the system with a PPTL formula φ, whether or not the system satisfies the
property (whether or not p → φ is valid) can equivalently be checked by
evaluating whether or not ¬(p → φ) ≡ p∧¬φ is unsatisfiable. Finally, the
satisfiability of a formula in the form of p ∧ ¬φ is checked by constructing
the NFG of p ∧ ¬φ, and then inspecting whether or not there exist paths
in the NFG.

1 Introduction

Verification and testing are basic techniques to validate systems [11,23,24] at the
present. Model checking is an automatic verification approach based on model
theory. To verify whether or not a system meets a property, the system is modeled
as a finite transition system or automaton M , and the property is specified by a
temporal logic formula p. Then a model checking procedure is employed to check
whether or not M |= p. The advantage of model checking is that the verification
can be done automatically. However, it suffers from the state explosion problem.
Also, it is less suitable for data intensive applications since the treatment of data
usually produces infinite state spaces [8]. Two successful model checking tools
are SPIN [7] and SMV [8].

The state explosion problem is typically caused by models growing expo-
nentially in the number of parallel components or data elements of an argument
system. This observation has led to a number of techniques for fighting this prob-
lem. The most rigorous approaches are compositional ones [12,17,18,19], trying
to avoid the problem in a divide and conquer fashion. Partial order methods

� This research is supported by the NSFC Grant No. 60433010, and Defense Pre-
Research Foundation of China, Grant No. 51315050105.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 167–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 Z. Duan and C. Tian

limit the size of the models representation by suppressing unnecessary inter-
leavings, which typically arise as a result of the serialization during the model
construction of concurrent systems [13,14,15,16].

The most significant improvement to model checking is made by Symbolic
Model Checking (SMC) [8,9,10] and Bounded Model Checking (BMC) [20]. In
SMC, sets of states are represented implicitly using boolean functions which
can be manipulated efficiently with Reduced Ordered Binary Decision Diagram
(ROBDD, or BDD for short) [21]. As a result, SMC allows a polynomial system
representation but may explode in the course of the model checking process.
The combination of SMC with BDDs pushed the barrier to systems with 1020

states and more [10]. However, the bottleneck of SMC methods is the amount of
memory that is required for storing and manipulating BDDs. Although numerous
techniques such as decomposition, abstraction, and various reductions have been
proposed through the years to overcome this problem, full verification of many
designs is still beyond the capacity of BDD based SMC.

The basic idea in BMC is to search for a counterexample in executions whose
length is bounded by some integer k [20]. If no bug is found then we increases
k until either a bug is found, the problem becomes intractable, or some pre-
known upper bound is reached. The BMC problem can be efficiently reduced
to a propositional satisfiability problem, and can therefore be solved by SAT
methods rather than BDDs. Experiments have shown that it can solve many
systems that cannot be solved by BDD-based techniques. However, BMC does
not solve the complexity problem of model checking since it still relies on an
exponential procedure and hence is limited in its capacity. BMC also has the
disadvantage of not being able to prove the absence of errors.

In this article, we present a unified model checking approach with Projection
Temporal Logic (PTL) based on Normal Form Graphs (NFGs) [5]. With this
method, a system is first modeled as P using a modeling, simulation and verifi-
cation language called MSVL which is a subset of PTL [2,25] and an extension of
Framed Tempura [6]. Thus, P is a non-deterministic program of MSVL and also
a formula of PTL. Second, a property of the system is specified by a formula φ of
Propositional PTL (PPTL) [2,5]. To check whether or not P satisfies φ amounts
to proving |= P → φ. It turns out equivalently to prove �|= P ∧ ¬φ. Thus, we
translate the model checking problem into a satisfiability problem in PPTL since
finite state programs in MSVL are equivalent to PPTL formulas (see Appendix
C). As a result, we have proved that PPTL is decidable and given a decision
procedure in [5]. With this procedure, a PPTL formula is satisfiable if and only
if there is a valid path in its NFG. Therefore, the problem of checking whether
or not P satisfies φ is eventually translated to the problem of checking whether
or not the NFG of P ∧¬φ contains a valid finite or infinite path. If not, the prop-
erty is verified otherwise a valid path of the NFG determines a counterexample.
Based on the above analysis, a model checking algorithm can be given as follows:
(1) modeling the system as program P in MSVL and specifying the property
of the system as a PPTL formula φ; (2) constructing the NFG of P ∧ ¬φ; (3)
checking the NFG to find out a counterexample if the NFG contains valid paths

A Unified Model Checking Approach with Projection Temporal Logic 169

otherwise output ’satisfied’ message. However, a further analysis tells us that a
more effective recursive algorithm can be given since we can transform P and
¬φ into their normal forms separately and the conjunction of P and ¬φ can be
reduced to the form in Pe ∧φe ∧ ε∨©(P ′ ∧¬φ′). Thus, the NFG of the original
formula P ∧ ¬φ can recursively be constructed.

Our method has some advantages. For instance, (1) the model and property
of a system can be written in the same logic; (2) the model checking algorithm
is relies on constructing the NFG of a PPTL formula; during the construction,
when a valid finite or infinite path has been constructed the algorithm immedi-
ately stops since we do not need to construct the whole NFG of the formula if we
do not expect to have all counterexamples; (3) the existing SAT procedure can
be reused to check the satisfaction of the state formulas with the present com-
ponents of a normal form; (4) the expressiveness of PPTL is more powerful than
Propositional Linear TL (PLTL) since we have proved that the expressiveness of
PPTL is equivalent to the full regular expression [22] but that of PLTL equals
star free regular expression [26,27]. However, in the worst case, our model check-
ing approach does not solve the complexity problem of model checking since it
still relies on an exponential procedure and hence is limited in its capacity.

This paper is organized as follows. In the following section, the syntax, se-
mantics and some logic laws of PTL are presented. In Section 3, the language
MSVL is formalized, the normal form and NFG of MSVL are defined, and finite-
ness for NFGs of MSVL is proved. Correspondingly, as a property specification
language, the syntax, semantics, normal form and NFGs of PPTL formulas are
briefly introduced in Section 4. In Section 5, the unified model checking approach
with PTL based NFGs is presented. Further, an example is given to show how
the model checking algorithm and the developed supporting tools work. Finally,
conclusions are drawn in Section 6.

2 Projection Temporal Logic

Our underlying logic is Projection Temporal Logic [3,2], it is an extension of
Interval Temporal Logic (ITL) [4]. Let Π be a countable set of propositions, and
V be a countable set of typed static and dynamic variables. B = {true, false}
represents the boolean domain and D denotes all the data we need. The terms
e and formulas p of the logic are given by the following grammar:

e ::= υ | ©e | -©e | beg(e) | end(e) | f(e1, ..., en)

p ::= π | e1 = e2 | P (e1, ..., en) | ¬p | p1 ∧ p2 | ∃x : p | ©p | (p1, ..., pm)prj p | p+

where π ∈ Π is a proposition, and υ a dynamic variable or a static variable.
In f(e1, . . . , en) and P (e1, . . . , en), f is a function and P is a predicate. It is
assumed that the types of the terms are compatible with those of the arguments
of f and P . A formula (term) is called a state formula (term) if it does not
contain any temporal operators (i.e. ©, -©, beg(.), end(.) and prj); otherwise
it is a temporal formula (term).

170 Z. Duan and C. Tian

A state s is a pair of assignments (Iv, Ip) where for each variable v ∈ V defines
s[v] = Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value
in D or nil (undefined), whereas Ip[π] ∈ B. An interval σ = 〈s0, s1, . . . 〉 is a
non-empty (possibly infinite) sequence of states. The length of σ, denoted by
|σ|, is defined as ω if σ is infinite; otherwise it is the number of states in σ minus
one. To have a uniform notation for both finite and infinite intervals, we will
use extended integers as indices. That is, we consider the set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <,≤,
to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
� as ≤ −{(ω, ω)}. With such a notation, σ(i..j) (0 ≤ i ≤ j ≤ |σ|) denotes the
sub-interval < si, ..., sj > and σ(k) (0 ≤ k ≤ |σ|) denotes < sk, ..., s|σ| >. The
concatenation of σ with another interval (or empty string) σ′ is denoted by σ ·σ′.
To define the semantics of the projection operator we need an auxiliary operator
for intervals. Let σ = 〈s0, s1, . . . 〉 be an interval and r1, . . . , rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ|. The projection of σ onto r1, . . . , rh is the
interval (called projected interval), σ ↓ (r1, . . . , rh) = 〈st1 , st2 , . . . , stl

〉, where
t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. For example,

〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉

An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = 〈s0, s1, . . . 〉 is an interval, i and k are non-negative integers, and j is an
integer or ω, such that i ≤ k ≤ j ≤ |σ|. We use (σ, i, k, j) to mean that a term
or formula is interpreted over a subinterval σ(i..j) with the current state being
sk. For every term e, the evaluation of e relative to interpretation I = (σ, i, k, j)
is defined as I[e], by induction on the structure of a term, where v is a variable
and e1, . . . , em are terms.

I[υ] = sk[υ] = Ik
v [υ] = Ii

v[υ], if υ is a static variable.
I[υ] = sk[υ] = Ik

v [υ], if υ is a dynamic variable.

I[f(e1, . . . , em)] =
{

f(I[e1], . . . , I[em]), if I[eh] �= nil for all h
nil, otherwise

I[©e] =
{

(σ, i, k + 1, j)[e], if k < j
nil, otherwise

I[-©e] =
{

(σ, i, k − 1, j)[e], if i < k
nil, otherwise

I[beg(e)] = (σ, i, i, j)[e]

I[end(e)] =
{

(σ, i, j, j)[e], if j �= ω
nil, otherwise

The satisfaction relation for formulas |= is inductively defined as follows.

1. I |= π if sk[π] = Ik
p [π] = true.

2. I |= P (e1, . . . , em) if P (I[e1], . . . , I[em]) = true and I[eh] �= nil, for all h.
3. I |= e = e′ if I[e] = I[e′].
4. I |= ¬p if I �|= p.
5. I |= p ∧ q if I |= p and I |= q.

A Unified Model Checking Approach with Projection Temporal Logic 171

6. I |= ©p if k < j and (σ, i, k + 1, j) |= p.
7. I |= ∃x : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j)

|= p and the only difference between σ and σ′ can be in the values assigned
to variable x.

8. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm � j
such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ ↓ (r0, . . . , rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.
9. I |= p+ if there are k = r0 ≤ r1 ≤ ... ≤ rn−1 � rn = j (n ≥ 1) such that

(σ, i, r0, r1) |= p and (σ, rl−1, rl−1, rl) |= p for all 1 < l ≤ n.

A formula p is satisfied by an interval σ, denoted by σ |= p, if (σ, 0, 0, |σ|) |=
p; a formula p is satisfiable if σ |= p for some σ. A formula p is valid, denoted
by |= p, if σ |= p for all σ. A formula p is lec-formula if (σ, k, k, j) |= p ⇔
(σ, i, k, j) |= p for any interpretation (σ, i, k, j).

The abbreviations true, false, ∧, → and ↔ are defined as usual. In particular,
true

def= P ∨ ¬P and false
def= P ∧ ¬P for any formula P . Also we have the

following derived formulas:

empty
def= ¬© true more

def= ¬empty

len(0) def= empty len(n) def= ©len(n − 1), n ≥ 1
skip

def= len(1)
⊙

P
def= empty ∨©P

P ; Q
def= (P, Q) prj empty �P

def= true ; P

�P
def= ¬�¬P p∗

def= empty ∨ p+

Some useful logic laws of PTL can be found in Appendix A and their proofs
can be found in [5,6].

3 Modeling, Simulation and Verification Language

The Language MSVL is a subset of Projection Temporal Logic with framing tech-
nique, and an extension of Framed Tempura [6]. It can be be used for the purpose
of modeling, simulation and verification of software and hardware systems.

3.1 Framing

Framing is concerned with the persistence of the values of variables from one
state to another. Intuitively, the framing operation on variable x, denoted by
frame(x), means that variable x always keeps its old value over an interval if
no assignment to x is encountered. For the definition of frame operator, a new
assignment called a positive immediate assignment is defined as

x ⇐ e
def= x = e ∧ px

172 Z. Duan and C. Tian

where px is an atomic proposition associated with state (dynamic) variable x,
and notice that px cannot be used for other purpose. To identify an occurrence
of an assignment to a variable, say x, we make use of a flag called the assignment
flag, denoted by a predicate af(x); it is true whenever an assignment of a value
to x is encountered, and false otherwise. The definition of the assignment flag
is af(x) def= px, for every variable x. There are state framing (lbf) and interval
framing (frame) operators. Intuitively, when a variable is framed at a state,
its value remains unchanged if no assignment is encountered at that state. A
variable is framed over an interval if it is framed at every state over the interval.

lbf(x) def= ¬af(x) → ∃b : (-©x = b ∧ x = b)
frame(x) def= �(more → ©lbf(x))

where b is a static variable.

3.2 The MSVL Language

The arithmetic expression e and boolean expression b of MSVL are inductively
defined as follows:

e ::= n | x | ©x | -©x | e0 op e1(op ::= + | − | ∗ | \ | mod)

b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x is a variable. The elementary statements in MSVL
are defined as follows.

Termination: empty
Assignment: x = e
P-I-Assignment: x ⇐ e
State Frame: lbf(x)
Interval Frame: frame(x)
Conjunction: p ∧ q
Selection: p ∨ q
Next: ©p
Always: �p

Conditional: if b then p else q
def= (b → p) ∧ (¬b → q)

Exists: ∃x : p
Projection: (p1, . . . , pm) prj p
Sequence: p ; q
While: while b do p

def= (p ∧ b)∗ ∧ �(empty → ¬b)
Parallel: p ‖ q

def= (p ∧ (q; true)) ∨ (q ∧ (p; true))
Await: await(b) def= (frame(x1) ∧ ... ∧ frame(xh)) ∧ �(empty ↔ b)

where xi ∈ Vb = {x | x appears in b}

where x denotes a variable, e stands for an arbitrary arithmetic expression, b a
boolean expression, and p1, . . . , pm, p and q stand for programs of MSVL. The

A Unified Model Checking Approach with Projection Temporal Logic 173

assignment x = e, positive immediate assignment x ⇐ e, empty, lbf(x), and
frame(x) are basic statements and the others are composite ones.

The assignment x = e means that the value of variable x is equal to the value
of expression e. Positive immediate assignment x ⇐ e indicates that the value
of x is equal to the value of e and the assignment flag for variable x, px, is true.
Statements of if b then p else q and while b do p are the same as that in the
conventional imperative languages. The next statement ©p means that p holds
at the next state while �p means that p holds at all the states over the whole
interval from now. p∧ q means that p and q are executed concurrently and share
all the variables during the mutual execution. p ∨ q means p or q are executed.
empty is the termination statement meaning that the current state is the final
state of the interval over which the program is executed. The sequence statement
p; q means that p is executed from the current state to its termination while q
will hold at the final state of p and be executed from that state. The existential
quantification ∃x : p intends to hide the variable x within the process p. lbx(x)
means the value of x in the current state equals to value of x in the previous
state if no assignment to x occurs, while frame(x) indicates that the value of
variable x always keeps its old value over an interval if no assignment to x is
encountered. Different from the conjunction statement, the parallel statement
allows both the processes to specify their own intervals. e.g., len(2)‖len(3) holds
but len(2) ∧ len(3) is obviously false. Projection can be thought of as a special
parallel computation which is executed on different time scales. The projection
(p1, . . . , pm) prj q means that q is executed in parallel with p1, . . . , pm over an
interval obtained by taking the endpoints of the intervals over which the p′is are
executed. In particular, the sequence of p′is and q may terminate at different
time points. Finally, await b does not change any variable, but waits until the
condition b becomes true, at which point it terminates.

Further, the following derived statements are useful in practice.

Multiple Selection: ORn
k=1

def= p1 ∨ p2 ∨ ... ∨ pn

Conditional: if b do p
def= if b do p else empty

When: when b do p
def= await(b); p

Guarded Command: b1 → p1�...�bn → pn
def= ORn

k=1(when bk do pk)
Repeat: repeat p until c

def= p; while ¬c do p

3.3 Normal Forms and NFGs of MSVL

Definition 1. A program q in MSVL is in normal form if

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

where 0 ≤ l ≤ 1, t > 0, and l + t ≥ 1. For 1 ≤ j ≤ t, qfj is a general MSVS
program; whereas qei (i = 1) and qcj (1 ≤ j ≤ t) are true or all are state formulas
of the form:

(x1 = e1) ∧ ... ∧ (xl = el) ∧ ˙px1 ∧ ... ∧ ˙pxl

174 Z. Duan and C. Tian

where ek ∈ D(1 ≤ k ≤ l). �

Theorem 1. Any MSVL program q can be rewritten into its normal form.

Proof: The proof for transforming most of the statements in MSVL into normal
form can be found in [2,6]. The other statements of MSVL can be transformed
in a similar way. �

Modeling a system with an MSVL program (formula in PTL) p, according to
the normal form, we can construct a graph, namely normal form graph (NFG),
which explicitly illustrates the state space of the system. Actually, the NFG also
presents the models satisfying formula p [5]. For an MSVL program p, the NFG
of p is a directed graph, G = (CL(p), EL(p)), where CL(p) denotes the set of
nodes and EL(p) denotes the set of edges in the graph. In CL(p), each node is
specified by a program in MSVL, while in EL(p), each edge is a directed arc
labeled with a state formula pe from node q to node r and identified by a triple,
(q, pe, r). CL(p) and EL(p) of G can be inductively defined as in Definition 2.

Definition 2. For a program p, the set CL(p) of nodes and the set EL(p) of
edges connecting nodes in CL(p) are inductively defined as follows:

1. p ∈ CL(p);

2. For all q ∈ CL(p) \ {ε, false}, if q ≡
l∨

i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj , then

ε ∈ CL(p), (q, qei, ε) ∈ EL(p) for each i; qfj ∈ CL(p), (q, qcj , qfj) ∈ EL(p)
for all j;

The NFG of formula p is the directed graph G = (CL(p), EL(p)). �

Definition 2 implies an algorithm for constructing NFGs of MSVL programs. In
the NFG of a program p generated by Definition 2, the set CL(p) of nodes and
the set EL(p) of edges are inductively produced by repeatedly rewriting the new
created nodes into their normal forms. So one question we have to answer is
whether or not the rewriting process terminates. Fortunately, we can prove that,
for any MSVL program p, the number of nodes in CL(p) is finite. An outline of
the proof is given in Appendix C.

To precisely characterize the models satisfying the program (formula), that
is, the behaviors of the system, a finite label F needs further to be added in the
NFG as analyzed in [5].

Example 1. NFG of MSVL program frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x =
2) then len(2) else {len(3)} can be constructed as shown in Fig.1. �

4 Property Specification Language

Propositional PTL (PPTL) is employed as the property specification language
in our model checking approach.

A Unified Model Checking Approach with Projection Temporal Logic 175

frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x = 2) then len(2) else {len(3)}

x = 2

x = 2

x = 3

x = 3

x = 3

ε

frame(x) ∧ len(2)

frame(x) ∧ len(1)

frame(x) ∧ len(1)

Fig. 1. NFG of MSVL program frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x =
2) then len(2) else {len(3)}

4.1 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. The formula p of PPTL is
given by the following grammar:

p ::= π | © p | ¬p | p1 ∨ p2 | (p1 , ..., pm) prj p | p+

where π ∈ Prop, p1 , ..., pm are all well-formed PPTL formulas. A formula is
called a state formula if it contains no temporal operators.

Following the definition of Kripke structure [1], we define a state s over Prop
to be a mapping from Prop to B = {true, false}, s : Prop −→ B. We will
use s[π] to denote the valuation of π at state s. Intervals, interpretation and
satisfaction relation can be defined in the same way as in the first order case.

4.2 Normal Form and NFGs of PPTL Formulas

Definition 3. A PPTL formula q is in normal form if

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

where 0 ≤ l ≤ 1, t > 0, and l + t ≥ 1, qei (i = 1) and qcj (1 ≤ j ≤ t) are true or
state formulas of the form:

π̇1 ∧ ... ∧ ˙πm

where each π̇k ∈ Prop (1 ≤ k ≤ m) and π̇k denotes πk or ¬πk. Each qfj is a
general PPTL formula. �

Definition 4. In a normal form, if
t∨

j=1

qcj ≡ true and
∨
i	=j

(qci ∧ qcj) ≡ false,

then this normal form is called a complete normal form. �

The complete normal form plays an important role in transforming the negation
of a PPTL formula into its normal form. For example, if q has been written to
its complete normal form:

176 Z. Duan and C. Tian

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

then we have,

¬q
def=

l∨
i=1

¬qei ∧ empty ∨
t∨

j=1

qcj ∧©¬qfj

Theorem 2. Any PPTL formula q can be rewritten into its normal form.
Proof: The proof can be found in [5]. �

A property of a system can be specified by a PPTL formula p. According to the
normal form, we can also construct the NFG of p, which explicitly illustrates the
models of the formula. The definition for NFGs of PPTL formulas is the same
as one defined for MSVL programs.

Theorem 3. For any PPTL formula p, CL(p), the set of nodes in the NFG of
p is finite.
Proof: The proof of the theorem can be found in [5]. �

To precisely characterize the models of PPTL formulas, finite labels F are added
in the NFGs to confine the finitely often occurrences of some nodes in paths of
an NFG as analyzed in [5].

Example 2. NFG of formula ¬(true;¬© q) ∨ p ∧©q is shown in Fig.2. �

v0 : ¬(true;¬© q) ∨ p ∧©q

v1 : q ∧ ¬(true;¬© q)
v2 : q

v3 : true

v0

v1 v2

v3

v4

true

q

p

qq

true

true v4 : ε

Fig. 2. NFG of formula ¬(true;¬© q) ∨ p ∧©q

5 Model Checking Approach with PTL Based on NFGs

5.1 Basic Approach

Modeling the system to be verified by an MSVL program p, and specifying the
desirable property of the system by a PPTL formula φ, to check whether or not
the system satisfies the property, we need to prove the validation of

p → φ

A Unified Model Checking Approach with Projection Temporal Logic 177

If p → φ valid, the system satisfies the property, otherwise the system violates
the property. Equivalently, we can check the satisfiability of

¬(p → φ) ≡ p ∧ ¬φ

If p ∧ ¬φ is unsatisfiable (p → φ is valid), the system satisfies the property,
otherwise the system fails to satisfy the property, and for each σ |= p ∧ ¬φ, σ
determines a counterexample that the system violates the property. Accordingly,
our model checking approach can be translated to the satisfiability of PTL for-
mulas of the form p ∧ ¬φ, where p is an MSVL program and φ is a formula in
PPTL. Since both model p and property φ are formulas in PTL, we call this
model checking a unified approach.

To check the satisfiability of PTL formula p ∧ ¬φ, we construct the NFG of
p ∧ ¬φ. As depicted in Fig.3, initially, we create the root node p ∧ ¬φ, then

p ∧ ¬φ

ε pfj ∧ ¬φfs

∨l
k=1 ¬φek ∧ empty ∨

∨t
s=1 ¬φcs ∧©¬φfs

∨l
i=1

∨l
k=1 pei ∧ ¬φek ∧ empty ∨

∨t
j=1

∨t
s=1 ¬φcs ∧ pcj ∧©(pfj ∧ ¬φfs)

∨l
i=1 pei ∧ empty ∨

∨t
j=1 pcj ∧©pfj

p ¬φ

(p ∧ ¬φ, pcj ∧ ¬φcs, pfj ∧ ¬φfs) (p ∧ ¬φ, pei ∧ ¬φck, ε)

Root node

node nodeedge edge

Fig. 3. Constructing NFG of p ∧ ¬φ

we rewrite p and ¬φ into their normal forms respectively. By computing the
conjunction of normal forms of p and ¬φ, new nodes ε and pfj ∧¬φfs, and edges
(p∧¬φ, pei ∧¬φck, ε) from node p∧¬φ to ε, (p∧¬φ, pcj ∧¬φcs, pfj ∧¬φfs) from
p∧¬φ to pfj∧¬φfs are created. Further, by dealing with each new created nodes
pfj ∧¬φfs using the same methods as the root nodes p∧¬φ repeatedly, the NFG
of p ∧ ¬φ can be produced. Thus, it is apparent that each node in the NFG of
p∧¬φ is in the form of p′ ∧¬φ′, where p′ and φ′ are nodes in the NFGs of p and
¬φ respectively. Therefore, a recursive algorithm can be formalized in Pseudo
code as shown in algorithm NFG. In the algorithm, another function Nf(p) is
called to produce the normal form of a PPTL formula or an MSVL program p.
This function can be found in [5]. For the complexity of the algorithm, roughly
speaking, if |cl(p)| = O(n) and |cl(¬φ)| = O(m), at most, |cl(p∧¬φ)| = O(n×m).

178 Z. Duan and C. Tian

Function NFG(p ∧ ¬φ)
/* precondition: p is a program in MSVL, ¬φ is a formula in PPTL*/
/* postcondition: NFG(p ∧ ¬φ) computes NFG of p ∧ ¬φ, G = (CL(p ∧ ¬φ), EL(p ∧ ¬φ))*/
begin function

CL(p ∧ ¬φ) = {p ∧ ¬φ}; EL(p ∧ ¬φ) = ∅; mark [p ∧ ¬φ] = 0; AddE = AddN = 0;
while there exists r ∧ ¬ϕ ∈ CL(p ∧ ¬φ) \ {ε}, and mark [r ∧ ¬ϕ] ==0

do mark [r ∧ ¬ϕ] =1; /*marking r ∧ ¬ϕ is decomposed*/
Q =Nf(r)∧Nf(¬ϕ);
case

Q is
h∨

j=1

t∨

i=1
rej ∧ ¬ϕei ∧ empty: AddE=1; /*first part of NF needs added*/

Q is
t∨

k=1

n∨

l=1
rck ∧ ¬ϕcl ∧ ©(rfk ∧ ¬ϕfl) : AddN=1; /*second part of NF needs added*/

Q is
h∨

j=1

t∨

i=1
rej ∧ ¬ϕei ∧ empty∨

t∨

k=1

n∨

l=1
rck ∧ ¬ϕcl ∧ ©(rfk ∧ ¬ϕfl): AddE=AddN=1;

/*both parts of NF needs added*/
end case
if AddE == 1 then /*add first part of NF*/

CL(p ∧ ¬φ) = CL(p ∧ ¬φ) ∪ {ε};

EL(p ∧ ¬φ) = EL(p ∧ ¬φ) ∪
h⋃

j=1

t⋃

i=1
{(r ∧ ¬ϕ, rej ∧ ¬ϕei, ε)};

AddE=0;
if AddN == 1 then /*add second part of NF*/

for each rfk ∧ ¬ϕfl if rfk ∧ ¬ϕfl 	∈ CL(p ∧ ¬φ)
mark [rfk ∧ ¬ϕfl]=0; /*rfk ∧ ¬ϕfl needs decomposed*/

CL(p ∧ ¬φ) = CL(p ∧ ¬φ) ∪
t⋃

k=1

n⋃

l=1
{rfk ∧ ¬ϕfl};

EL(p ∧ ¬φ) = EL(p ∧ ¬φ) ∪
t⋃

k=1

n⋃

l=1
{(r ∧ ¬ϕ, rck ∧ ¬ϕcl, rfk ∧ ¬ϕfl)};

AddN=0;
end while
return G;

end function

Further, for any node in the NFG of p ∧ ¬φ, finite label F is added in node
p′ ∧ ¬φ′ where if in the NFG of p, p′ is labeled with F , or in the NFG of
¬φ, ¬φ′ is labeled with F . In the NFG of formula q ≡ p ∧ ¬φ, a finite path,
Π = 〈q, qe, q1, q1e, ..., ε〉, is an alternate sequence of nodes and edges from the root
to ε node, while an infinite path, Π = 〈q, qe, q1, q1e, ...〉, is an infinite alternate
sequence of nodes and edges emanating from the root, where F occurs only
finitely often. Similar to the proof in [5], it can be proved that, the paths in the
NFG of q precisely characterize models of q. Thus, if there exist paths in the
NFG of q, q is satisfiable, otherwise unsatisfiable.

5.2 Model Checker

We have developed a model checking tool (prototype) based on our model check-
ing algorithm. Generally, the prototype can work in three modes: modeling, sim-
ulation and verification. With the modeling mode, given the MSVL program p
of a system, the state space of the system can implicitly be given as an NFG of
p. In the simulation mode, an execution path of the NFG of the system is output
according to minimal model semantics of MSVL [6]. Under the verification mode,
given a system model described by an MSVL program, and a property speci-
fied by a PPTL formula, it can automatically be checked whether the system

A Unified Model Checking Approach with Projection Temporal Logic 179

satisfies the property or not, and the counterexample can be given if the system
does not satisfy the property.

5.3 Example

As an example, consider the mutual exclusion problem of two processes competing
for a shared resource as analyzed in [20]. Pseudo code for this example can be given
as shown in Fig.4. We assume that the processes are executed in one time unit in

Fig. 4. Pseudo code for two processes A and B competing for a shared resource

an interleaving manner. The wait statement makes a process into sleep. When all
processes are asleep the scheduler tries to find a process satisfying waiting con-
dition and reactivates the corresponding process. If all of the waiting conditions
are false the system stalls. This mutual exclusion problem can be coded in MSVL
as follows. Notice that the underlined code can be ignored with the current part
since it is for the purpose of making a counterexample later on.

frame(Apc, Bpc, Ars, Brs) and
(Apc=0 and Ars=0 and Bpc=0 and Brs=0 and skip;
while(true){
(await(Bpc=0);
Apc=1 and Ars=1 and skip;
Apc=0 and Ars=0 and skip)
or
(Apc=1 and Ars=1 and Bpc=1 and Brs=1 and skip;
Apc=0 and Ars=0 and Bpc=0 and Brs=0 and skip)
or
(await(Apc=0);
Bpc=1 and Brs=1 and skip;
Bpc=0 and Brs=0 and skip) }).

where Ars=1 (Brs=1) means processes A (B) is in the shared resource, while
Ars=0 (Brs=0) means processes A (B) has released the shared resource. With
the modeling mode of MSVL, the state space of the mutual exclusion problem
can be created and presented as an NFG as shown in Fig.5. In the NFG, edge 0
indicates that neither process A nor B is in the shared resource; edge 1 (from 1 to
2) indicates that process A is in the shared resource and B is not; edge 2 (from 2 to
1) indicates that neither process A nor B is in the shared resource; edge 4 (from 1
to 3) indicates that process B is in the shared resource and A is not; edge 5 (from
3 to 1) indicates that neither process A nor B is in the shared resource.

180 Z. Duan and C. Tian

Fig. 5. NFG of the mutual exclusion problem

As a result, the property, “processes A and B will never be in the shared
resource in the same time”, should hold. That is, Ars and Brs will never be
assigned with 1 at the same time. By employing propositions p and q to denote
Ars = 1 and Brs = 1 respectively, this property can be specified by �(¬(p∧ q))
in PPTL. With the verification mode of MSVL, we add the following code

</define p:Ars=1; define q:Brs=1; always(∼(p and q))/>

to the beginning of the MSVL code for the mutual exclusion problem, then run
the code with model checker, an empty NFG with no edges is produced as shown
in Fig.6. This means that the formula is unsatisfiable, and the system satisfies
the property.

Fig. 6. Verification result

Suppose that, when A is in the shared resource, B is possible in the shared
resource. To model it, we add the code with underline to the previous MSVL code
of the system. Now we check whether or not the system satisfies �(¬(p∧q)), and
the resulting NFG is produced as shown in Fig.7. Obviously, there exist infinite
paths where node 1 and node 2 appear infinitely often. Thus, the property cannot
be satisfied.

As you can see, MSVL and PPTL can be used to verify properties of programs
in a similar way as kripke structures (or automata) and PLTL (or CTL) do.
However, the expressive power of PLTL and CTL is limited. They cannot express
regular properties such as “a property Q holds at even states ignoring odd ones

A Unified Model Checking Approach with Projection Temporal Logic 181

Fig. 7. Verification result

over an interval (or computation run) ” [7]. This type of property can be specified
and verified by PPTL. In the following, we further verify such a property of the
mutual exclusion problem.

The mutual exclusion problem has a special property: “neither A nor B is
in the shared resource, immediately after A or B released the shared resource;
and when A or B is in the shared resource, it releases the resource at the next
state”. Basically, this property is a regular property. It can be specified by,
¬p∧¬q∧ (©2¬p∧¬q∧ empty)∗ in PPTL. Thus, we can add </define p:Ars=1;
define q:Brs=1; ∼p and ∼q and (next(next(∼p and ∼q and empty)))# /> to
the beginning of the MSVL code for the mutual exclusion problem, then run the
code with model checker, an empty NFG with no edges is produced as shown in
Fig.8. Hence, the formula is unsatisfiable, and the system satisfies the property.

Fig. 8. Verification result

6 Conclusion

In this paper, we proposed a unified model checking approach with PTL based
on NFGs. A model checker has also been developed to support the proposed
method. This approach has an apparent advantage: model p and property φ of
a system are both described in the same logic framework PTL. This enables us
to translate the problem of checking whether or not p satisfies φ to the problem
of checking the satisfiability of p∧¬φ. In turn, this can be done by constructing
the NFG of p∧¬φ and checking whether or not there exist any finite or infinite
paths in the NFG. As you can see, NFG is a finite graph based structure. So we
can use graph theory to manipulate NFGs. Further, an NFG can be equivalently
transformed to a Büchi automaton [22]. Hence, automata theory can also be used
to manipulate NFGs. However, our approach, in worst case, does not reduce the

182 Z. Duan and C. Tian

complexity of the model checking problems although in many cases it works well
since we do not need to produce a whole NFG but just a finite or infinite path
as a counterexample.

To combat the space explosion problem, we will further investigate the possi-
bility of combinations of SMC or BMC techniques with our approach. In partic-
ular, BMC is a SAT based approach for searching a counterexample in a given
integer k steps. With this approach, the model M in the Kripke structure and
property φ in a PLTL formula of a system are translated to a propositional clas-
sic logic formula f . To check whether or not M |= φ is equivalently to check the
satisfiability of f . Thus, the SAT procedure can be used to solve the problem.
This idea can be used in our approach. However, we do not need to translate
the formulas into a classic propositional logic framework rather in their normal
forms and use SAT procedures in a stepwise way. This research is a challenge to
us in the near future. Also, the current version of the model checker is merely a
prototype and lots of efforts are needed to improve it. In addition, to examine
our method, several case studies with larger examples are also required.

Acknowledgement

We would like to thank Miss Xiao Xiao Yang, Miss Xia Guo and Miss Xiao Xing
Zhang for the useful discussion. In particular, Guo and Zhang’s effort to make
the verification example work with the prototype is very appreciated.

References

1. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9, 67–96 (1963)

2. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne
(May 1996)

3. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing
(2006)

4. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of
Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)

5. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection
Temporal Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

6. Duan, Z., Yang, X., Koutny, M.: Framed Temporal Logic Programming. Science
of Computer Programming 70, 31–61 (2008)

7. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineer-
ing 23(5), 279–295 (1997)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

9. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequen-
tial circuits. In: Proc. IEEE International Conference on Computer-Aided Design
(1990)

A Unified Model Checking Approach with Projection Temporal Logic 183

10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579. Springer, Heidelberg
(1999)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. ASI, vol. F
13, pp. 123–144. Springer, Berlin (1985)

13. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

14. Godefroid, P., Wolper, P.: A partial approach to model checking. Information and
Computation 110(2), 305–326 (1994)

15. Esparza, J.: Model checking using net unfoldings. Science of Computer Program-
ming 23, 151–195 (1994)

16. Penczek, W., Gerth, R., Kuiper, R.: Partial order reductions preserving simulations
(submitted for publication, 1999)

17. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

18. Josko, B.: Verifying the correctness of AADL modules using model checking. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430,
pp. 386–400. Springer, Heidelberg (1990)

19. Josko, B.: Modular Specification and Verification of Reactive Systems. PhD thesis,
Univ. Oldenburg, Fachbereich Informatik (April 1993)

20. Biere, A., Cimati, A., Clark, E.M., Strichman, O., Zhu, Y.: Bounded Model Check-
ing. Advances in Computers 58 (2003)

21. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C35(12), 1035–1044 (1986)

22. Tian, C., Duan, Z.: Propositional Projection Temporal Logic. In: Agrawal, M.,
Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 47–58. Springer,
Heidelberg (2008)

23. Liu, S., Wang, H.: An automated approach to specification animation for validation.
Journal of Systems and Software 80, 1271–1285 (2007)

24. Liu, S., Chen, Y.: A relation-based method combining functional and structural
testing for test case generation. Journal of Systems and Software 81, 234–248 (2008)

25. Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal of
Computer Science and Technology 19, 333–344 (2004)

26. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: POPL 1980: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 163–173. ACM Press, New York (1980)

27. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T research mono-
graph no.65). The MIT Press, Cambridge (1971)

184 Z. Duan and C. Tian

Appendix A: Logic Laws of PTL

The following are some useful logic laws of PTL.

L1 �(P ∧ Q) ≡ �P ∧ �Q
L2 �(P ∨ Q) ≡ �P ∨ �Q
L3 ©(P ∨ Q) ≡ ©P ∨©Q
L4 ©(P ∧ Q) ≡ ©P ∧©Q
L5 R; (P ∨ Q) ≡ (R; P) ∨ (R; Q)
L6 (P ∨ Q); R ≡ (P ; R) ∨ (Q; R)
L7 �P ≡ P ∨©�P
L8 �P ≡ P ∧

⊙
�P

L9 more ∧ ¬© P ≡ more ∧©¬P
L10 ¬

⊙
P ≡ ©¬P

L11 ©(∃x : p) ≡ ∃x : ©p
L12 ©P ; Q ≡ ©(P ; Q)
L13 w ∧ (P ; Q) ≡ (w ∧ P) ; Q
L14 p+ ≡ p ∨ (p; p+)
L15 Q prj empty ≡ Q
L16 empty prj Q ≡ Q
L17 (P1, ...Pm) prj empty ≡ P1; ...; Pm

L18 (P, empty) prj Q ≡ (P ∧ �empty) prj Q
L19 (P1, ..., Pt, w ∧ empty, Pt+1, ..., Pm) prj Q ≡ (P1, ..., Pt, w ∧ Pt+1, ...,

Pm)prjQ
L20 (P1, ..., (Pi ∨ P ′

i), ..., Pm) prj Q ≡ ((P1, ..., Pi, ..., Pm) prj Q) ∨ ((P1, ...,
P ′

i , ..., Pm) prj Q)
L21 (P1, ..., Pm) prj (P ∨ Q) ≡ ((P1, ..., Pm) prj P) ∨ ((P1, ..., Pm) prj Q)
L22 (P1, ..., Pm) prj © Q ≡ (P1 ∧ more; (P2, ..., Pm) prj Q) ∨ (P1 ∧ empty;

(P2, ..., Pm) prj © Q)
L23 (©P1, ..., Pm) prj © Q ≡ ©(P1 ; (P2, ..., Pm) prj Q)
L24 (w ∧ P1, ..., Pm) prj Q ≡ w ∧ ((P1, ..., Pm) prj Q)
L25 (P1, ..., Pm) prj (w ∧ Q) ≡ w ∧ ((P1, ..., Pm) prj Q)

A Unified Model Checking Approach with Projection Temporal Logic 185

Appendix B: Logic Laws of MSVL

L26 while b do p ≡ if b then (p; while b do p) else empty
L27 while b do p ≡ if b then (p ∧ more; while b do p) else empty
L28 while b do p ≡ ((¬b ∧ empty) ∨ (b ∧ p ∧ more; while b do p))∨

b ∧ p ∧ �more
L29 while b do p ≡ ((¬b ∧ empty) ∨ (b ∧ p; while b do p)) ∨ b ∧ p ∧ �more
L30 frame(x) ≡ frame(x)||frame(x) ≡ frame(x); frame(x) ≡

frame(x) ∧ frame(x)
L31 frame(x) ∧ more ≡ ©(lbf(x) ∧ frame(x))
L32 frame(x) ∧ empty ≡ empty
L33 frame(x) ∧ (p ∨ q) ≡ frame(x) ∧ p ∨ frame(x) ∧ q
L34 frame(x) ∧ (p; q) ≡ frame(x) ∧ p; frame(x) ∧ q
L35 frame(x) ∧ (p||q) ≡ frame(x) ∧ p||frame(x) ∧ q

Appendix C: Finiteness of NFGs of MSVL Programs

Let D = {d1, ..., dn} be a finite set of data, V = {x1, ..., xm} a finite set of vari-
ables, and Prop a countable set of atomic propositions. To prove the finiteness
of NFGs of MSVL programs, we first prove that, for any MSVL program, it can
be equivalently expressed by a PPTL formula.

Theorem 4. Any program p in MSVL can be equivalently expressed by a for-
mula Φ(p) in PPTL.

Proof. The proof proceeds by induction on structures of programs in MSVL.
First of all, we assume that any boolean expression b can be evaluated to a
boolean value true or false, and an arithmetic expression e can be evaluated to a
value dk ∈ D. Therefore, a boolean expression b can be thought of as an atomic
proposition pb ∈ Prop. Further,

1. For empty, Φ(empty) def= empty;
2. For xi = e, we define xi = dj

def= pj
i ∈ Prop, where xi ∈ V and dj ∈ D. Thus,

Φ(xi = e) def= pk
i if e = dk ∈ D otherwise false

3. For xi ⇐ e, by the definition, xi ⇐ e ≡ xi = e ∧ pxi ,

Φ(xi ⇐ e) def= Φ(xi = e) ∧ pxi

4. For lbf(xi), by the definition, lbf(xi) ≡ ¬pxi → ∃dn ∈ D : (-©xi = dn ∧ xi =
dn), we have,

Φ(lbf(xi))
def= ¬pxi → pn

i

5. For frame(xi), by the definition, frame(xi) ≡ �(more → ©lbf(xi)), we
have,

Φ(frame(xi))
def= �(more → ©Φ(lbf(xi)))

186 Z. Duan and C. Tian

6. For p ∧ q, Φ(p ∧ q) def= Φ(p) ∧ Φ(q);
7. For p ∨ q, Φ(p ∨ q) def= Φ(p) ∨ Φ(q);
8. For ©p, Φ(©p) def= © Φ(p);
9. For �p, Φ(�p) def= �Φ(p);
10. For p; q, Φ(p; q) def= Φ(p); Φ(q);
11. For if b then p else q, by the definition, if b then p else q ≡ b ∧ p ∨ ¬b ∧ q,
we have,

Φ(if b then p else q) def= pb ∧ Φ(p) ∨ ¬pb ∧ Φ(q)

12. For (p1, ..., pm)prj q, Φ((p1, ..., pm)prj q) def= (Φ(p1), ..., Φ(pm))prj Φ(q);
13. For while b do p, by the definition, while b do p ≡ (p∧b)∗∧�(empty → ¬b),
we have,

Φ(while b do p) def= (Φ(p) ∧ Pb)∗ ∧ �(empty → ¬pb)

14. For p||q, by the definition, p||q ≡ p ∧ (q; true) ∨ q ∧ (p; true), we have,

Φ(p||q) def= Φ(p) ∧ (Φ(q); true) ∨ Φ(q) ∧ (Φ(p); true)

15. For await(b), by the definition, await(b) ≡ (frame(x1)∧ ...∧ frame(xh))∧
�(empty ↔ b),

Φ(await(b)) def= (Φ(frame(x1)) ∧ ... ∧ Φ(frame(xh))) ∧ �(empty ↔ pb)

16. For ∃x : q, since q can be rewritten into its normal form, q
def=

l∨
i=1

qei ∧

empty ∨
t∨

j=1

qcj ∧©qfj , we have,

Φ(∃x : q) def= Φ(∃x : (
l∨

i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj))

≡ Φ(
l∨

i=1

(∃x : qei) ∧ empty ∨
t∨

j=1

(∃x : qcj) ∧©(∃x : qfj))

≡
l∨

i=1

Φ(∃x : qei) ∧ empty ∨
t∨

j=1

Φ(∃x : qcj) ∧©Φ(∃x : qfj)

≡
l∨

i=1

n∨
k=1

qei[dk/x] ∧ empty ∨
t∨

j=1

n∨
k=1

qcj[dk/x] ∧©Φ(∃x : qfj)

Thus, for any MSVL program, it can be equivalently expressed by a PPTL
formula. �

Notice that in the above proof of 16, we can use Φ(∃xip) recursively so that a
PPTL formula can be obtained. A question one may ask is that this transforma-
tion process can terminate? The answer is ‘yes’ since a simple inductive proof
on the structure of p can be made to achieve the conclusion. We omit the details
here. In [5], we have proved the finiteness of NFGs of PPTL formulas. Hence,
the conclusion also holds for MSVL programs since any MSVL program can be
equivalently expressed by a PPTL formula.

Formal Analysis of the Bakery Protocol with

Consideration of Nonatomic Reads and Writes

Kazuhiro Ogata and Kokichi Futatsugi

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{ogata,kokichi}@jaist.ac.jp

Abstract. The bakery protocol is the first real solution of the mutual
exclusion problem. It does not assume any lower mutual exclusion pro-
tocols. The bakery protocol has been often used as a benchmark to
demonstrate that proposed verification methods and/or tools are pow-
erful enough. But, the true bakery protocol has been rarely used. We
have formally proved that the protocol satisfies the mutual exclusion
property. The proof is mechanized with CafeOBJ, an algebraic specifi-
cation language, in which state machines as well as data types can be
specified. Nonatomic reads and writes to shared variables are formalized
by representing an assignment to a shared variable with multiple atomic
transitions. Our formal model of the protocol has states in which a shared
variable is being modified. A read to the variable in such states obtains
an arbitrary value, which is represented as a CafeOBJ term.

Keywords: CafeOBJ, invariant property, mutual exclusion, observa-
tional transition system (OTS), verification.

1 Introduction

The mutual exclusion problem is one of the classic but still important problems
in computer science. The problem was originally raised and solved by Edsger
Dijkstra in 1965 [1]. Many solutions have been proposed since then. But, it took
nine years to solve the problem in the true sense of the word. The first real
solution is the bakery protocol proposed by Leslie Lamport in 1974 [2]. All mutual
exclusion protocols before the bakery protocol assume lower mutual exclusion
protocols. On the other hand, the bakery protocol does not.

The bakery protocol has been often used as a benchmark to demonstrate
that proposed verification methods and/or tools, among which are [3,4,5], are
powerful enough. But, the true bakery protocol has been rarely used. A simplified
version of the bakery protocol has been often used such that the simplified version
assumes that a read and a write to a shared variable are performed exclusively.

Lamport gives an informal proof [2] that the protocol satisfies some properties
and more rigorous proofs [6,7,8] that the protocol satisfies the mutual exclusion
property. The proofs do not assume any atomicity. But, they do not seem to
have been mechanized.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 187–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 K. Ogata and K. Futatsugi

We describe a fully formal and mechanized proof that the protocol satisfies
the mutual exclusion protocol. We have faithfully made an abstract model of the
protocol as much as the formal method used can. Our abstract model respects
nonatomic reads and writes to shared variables, namely that those reads and
writes can overlap. Nonatomic reads and writes to shared variables are formal-
ized by representing an assignment to a shared variable with multiple atomic
transitions. Our abstract model has states in which a shared variable is being
modified. A read to the variable in such states obtains an arbitrary value. Our
abstract model uses natural numbers, while the bakery protocol uses integers.
But, we do not think that this difference is major because sequences of bits
can be naturally interpreted as unsigned integers, or natural numbers. We have
formally proved that our abstract model satisfies the mutual exclusion property.

The formal method used is the OTS/CafeOBJ method [9,10]. Observational
transition systems (OTSs) are used as abstract models, CafeOBJ [11], an alge-
braic specification language, is used to specify OTSs and properties to verify, and
the CafeOBJ system is used as an interactive proof assistant. We also describe
some specification and verification techniques used in the case study, which can
be used for not only the OTS/CafeOBJ method but also other formal methods
based on algebraic specifications.

The rest of the paper is organized as follows. Section 2 describes the bakery
protocol. Sections 3 and 4 introduce CafeOBJ and OTSs, respectively. Section 5
describes how to model the bakery protocol as an OTS, which is specified in
CafeOBJ. Section 5 describes the verification. Section 7 discusses some issues on
specification and verification. Section 8 mentions some related work. Section 9
concludes the paper.

2 The Bakery Protocol

Many existing mutual exclusion protocols assume atomic instructions, which can
be considered lower mutual exclusion protocols. Some assume that read (or load)
and write (or store) instructions are atomic [1,12], which implies that a read and a
write to a shared variable are performed exclusively. Some assume more complex
atomic instructions such as test and set and fetch and store instructions [13,14].
Unlike those protocols, the bakery protocol does not assume any lower mutual
exclusion protocols.

The bakery protocol is an N -process mutual exclusion protocol. The N natural
numbers 1, . . . , N are used as the identifications of the N processes, respectively.
Fig. 1 shows the protocol in the ALGOL style for each process i. The type of each
variable used is integer. choosing [i] and number [i] are shared variables among
the N processes. While all processes read the variables, only the process i writes
them. j is a local variable to the process i.

The function maximum takes N integers and returns one of them, which is not
less than the others. The N arguments can be read in any order. (a, b) < (c, d)
equals a < c ∨ (a = b ∧ b < d).

Formal Analysis of the Bakery Protocol 189

begin integer j;
L1: choosing [i] := 1;

number [i] := 1 + maximum(number [1], . . . ,number [N]);
choosing [i] := 0;
for j = 1 step 1 until N do
begin

L2: if choosing [j] �= 0 then goto L2;
L3: if number [j] �= 0 and (number [j], j) < (number [i], i)

then goto L3;
end;

critical section;
number [i] := 0;
noncritical section;
goto L1;

end

Fig. 1. The bakery protocol in the ALGOL style

Initially, the process i is in the noncritical section, both choosing [i] and
number [i] are set to 0, and j is an arbitrary integer. We suppose that if the
process i enters the critical section, it eventually leaves there, and the process i
does not write both choosing [i] and number [i] in both the critical and noncritical
sections.

One of the desired properties the bakery protocol should satisfy is the mutual
exclusion property, which means that there exists at most one process in the
critical section at any given moment.

3 CafeOBJ

CafeOBJ is an algebraic specification language mainly based on order-sorted
algebras and hidden algebras. Data are specified in terms of the former and state
machines are specified in terms of the latter. CafeOBJ has two kinds of sorts:
visible and hidden sorts. Visible and hidden sorts denote carrier sets of order-
sorted algebras and hidden algebras, respectively. Elements of visible and hidden
sorts are data values and states of state machines, respectively.

There are two kinds of operators: conventional and behavioral operators. The
former are used as data constructors and functions on data, and the latter are
used for state machines. The former are also used to represent states of state
machines. The latter are classified into observations and actions. Observations
obtain data values that characterize states, and actions change states. A conven-
tional operator f , an observation o and an action a are declared as “op f :VL
-> S”, “bop o :H VL -> V ” and “bop a :H VL -> H”, respectively, where
VL is a list of visible sorts, S is a visible or hidden sort, V is a visible sort
and H is a hidden sort. Conventional operators with no arguments are called
constants. An operator can be given attributes such as assoc, comm and id: t,
which specify that the operator is associative and commutative, and a term t is
an identity of the operator.

190 K. Ogata and K. Futatsugi

There are two kinds of equations: conventional and behavioral equations. Both
can have conditions. A conventional equation says that two data values are equal,
and a behavioral equation says that two states are equal in that any observation
returns a same data value in the two states and any sequence of actions preserves
it. A conventional equation and a behavioral equation are declared as “[c]eq lv
= rv [if c] .” and “[c]beq lh = rh [if c] .”, respectively, where lv and rv are
terms whose sorts are visible, lh and rh are terms whose sorts are hidden and c
is a term whose sort is Bool (see below).

Basic units of CafeOBJ specifications are modules. CafeOBJ provides built-in
modules. One of the most important built-in modules is BOOL in which proposi-
tional logic is specified. BOOL is automatically imported by almost every module
unless otherwise stated. In BOOL and its parent modules, declared are the visible
sort Bool denoting the set of Boolean values, the constants true and false of
Bool, and operators denoting some basic logical connectives. Among the opera-
tors are not_, _and_, _or_, _xor_, _implies_ and _iff_ denoting negation (¬),
conjunction (∧), disjunction (∨), exclusive disjunction (xor), implication (⇒)
and logical equivalence (⇔), respectively. An underscore _ indicates the place
where an argument is put such as “b1 and b2”. The operators _and_, _or_ and
xor are given assoc and comm. The operator if_then_else_fi corresponding
to the if construct in programming languages is also declared. CafeOBJ uses the
Hsiang term rewriting system [15] as the decision procedure for propositional
logic, which is implemented in BOOL. CafeOBJ reduces any term denoting a
proposition that is always true (false) to true (false). More generally, a term
denoting a proposition reduces to an exclusively disjunctive normal form of the
proposition.

4 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space and each data type used in
OTSs is provided. The state space is represented by a hidden sort H and data
types are represented by visible sorts such as Vo1.

An OTS S is 〈O, I, T 〉 such that

– O : A finite set of observers. Each observer is represented as an observa-
tion declared as “bop o :H Vo1 ...Vom -> Vo”. The equivalence relation
(s1 =S s2) between two states s1, s2 : H is defined as o(s1, x1, . . . , xm) =
o(s2, x1, . . . , xm) for all o ∈ O and all xi : Voi for i = 1, . . . , m. Observers
correspond to variables in the conventional definitions of transition systems.

– I : The set of initial states. An arbitrary initial state is represented by a con-
stant init declared as “op init : -> H”. Let Xi be a CafeOBJ variable of
Voi. The constant init is defined with a set of equations. For each observer o,
the definition has the equation “eq o(init, X1, . . . , Xm) = initVal .”, where
initVal is a term denoting a data value returned by the observer in an arbi-
trary initial state.

– T : A finite set of transitions. Each transition is represented as an ac-
tion declared as “bop t :H Vt1 ...Vtn -> H”. Each transition preserves

Formal Analysis of the Bakery Protocol 191

the equivalence relation =S . Each transition t has the condition c-t. If
c-t(s, y1, . . . , yn) does not hold, then t(s, y1, . . . , yn) =S s for all s : H and all
yj for j = 1, . . . , n. Each transition t is defined with a set of equations. Let S
be a CafeOBJ variable of H and Yj be a CafeOBJ variable of Vtj . For each ob-
server o, the definition has the equation “ceq o(t(S, Y1, . . . , Yn), X1. . . . , Xm)
= newVal if c-t(S, Y1, . . . , Yn) .”, where newVal is a term denoting the
data value returned by the observer in the successor state t(S, Y1, . . . , Yn) if
the effective condition holds. If t does not change the value returned by o, we
may omit the condition and use a nonconditional equation. The definition has
one more equation “cbeq t(S, Y1, . . . , Yn) = S if not c-t(S, Y1, . . . , Yn) .”,
which says that the transition does not change states essentially if the effec-
tive condition does not hold.

Given an OTS S, a transition t ∈ T and two states s, s′ : H , if
t(s, b1, . . . , bn) =S s′ for some values b1 : Vt1, . . . , bn : Vtn, then we write s �t

S s′

and call s′ a t-successor state of s with respect to (wrt) S. t may be omitted
from s �t

S s′ and s′ may be called a successor state of s wrt S.
Given an OTS S, reachable states wrt S are inductively defined:

– Each s0 ∈ I is reachable wrt S.
– For each s, s′ : H such that s �S s′, if s is reachable wrt S, so is s′.

Let RS be the set of all reachable states wrt S.
Operators whose ranks (types) are H -> Bool are called state predicates.

Any state predicate p : H -> Bool is called invariant wrt S if p holds in all
reachable states wrt S, i.e. ∀s : RS . p(s).

5 Model and Specification of the Bakery Protocol

We describe the OTS SBakery modeling the bakery protocol, which is specified
in CafeOBJ.

5.1 Data Used

Five kinds of data are used in SBakery: (1) Boolean values, (2) natural numbers,
(3) pairs of natural numbers, (4) sets of natural numbers, and (5) labels.

The built-in module BOOL is used for Boolean values. As described in Sect. 3,
a Boolean term reduces to an exclusively disjunctive normal form. This is useful
because this can check if a given Boolean term is always true (or false). But, it
may take too much time for Boolean terms to reduce to their normal forms if the
terms have many disjunctions. In addition to _or_, BOOL has the declaration of
another operator _or-else_ for disjunction. The use of _or-else_, instead of
or, can prevent Boolean terms from fully reducing to their exclusive-or normal
forms and can save much time. The attributes assoc and comm are not given to
or-else in BOOL. For convenience, those attributes are given to the operator.

The sort Nat represents the set of all natural numbers. The constant 0 and
the operator s denote zero and the successor function. We have the operators

192 K. Ogata and K. Futatsugi

=, _<_ and max. The first two are the equivalence predicate and the less-than
predicate. The third one takes two natural number and returns one that is not
less than the other. The attribute comm is given to _=_.

We have the constant numOfProcs of Nat, which is the number of processes
participating in the protocol. numOfProcs corresponds to N in Fig. 1. The predi-
cate isPid checks if a given natural number p is used as a process identification,
namely that p is greater than 0 and less than or equal to N represented by
numOfProcs.

We also have the operator next. Given a natural number x, the term next(x)
denotes an arbitrary natural number. The operator is used to model an assign-
ment to a shared variable.

The sort NatPair represents the set of all pairs of natural numbers. The
operator <_,_> is the constructor of pairs of natural numbers. We have the
operators _=_ and _<_. < a,b > = < c,d > equals a = b and b = d, and < a,b
> < < c,d > equals a < c or (a = c and b < d). The attribute comm is given
to _=_.

The sort NatSet represents the set of all sets of natural numbers. Nat is
declared as a sub-sort of NatSet, which specifies that a natural number is the
singleton set that contains the number. The constant empty denotes the empty
set and the juxtaposition operator __ is the constructor of nonempty sets. The
attributes assoc, comm and id: empty are given to the juxtaposition operator.
We have the operators _\in_, del and empty?. The first checks if a given element
is in a given set, the second deletes a given element from a given set if any, and
the third checks if a given set is empty. We also have the operator mkSet, which
takes a natural number n and returns empty if n is zero and the term denoting
{1, . . . , n} if n is greater than zero.

Labels are used to indicate which parts of the protocol processes are going
to execute next. The sort Label represents the set of all labels. There are 17
labels, which are represented by the 17 constants l1, l2, . . . , l15, cs, and ncs.
We have the operator _=_, which is the equivalence predicate on labels. The
attribute comm is given to _=_.

5.2 Definition of Equivalence Predicate on Labels

The operator _=_ is defined with a set of equations. One equation is “eq (L
= L) = true .”, where L is a CafeOBJ variable of Label. Given two different
labels l1 and l2 such as cs and ncs, we want l1 = l2 to reduce to false. Given
one label l and a term x whose final value has not been determined, however, we
do not want l = x to reduce to either true or false because x may or may not
equal l. One way to define the operator to fulfill the requirement is to declare
the equation “eq (l1 = l2) = false .” for each pair l1, l2 of different labels.
But, we need to declare many such equations.

Another solution [16], which does not require to declare many equations, is
as follows. We use another sort RealLabel, which is declared as a sub-sort of
Label. The 17 constants l1, l2, . . . , l15, cs, and ncs are declared as those of
RealLabel. Then, all we have to do is to declare one more equation “eq (RL1

Formal Analysis of the Bakery Protocol 193

= RL2) = (RL1 == RL2) .”, in addition to the equation “eq (L = L) = true
.”, where RL1 and RL2 are CafeOBJ variables of RealLabel, and the operator
== is a built-in predicate. The built-in predicate returns true if given two terms
reduce to a same term and false otherwise. That is, it returns false even if
two terms may represent a same data value. This is why we cannot use _==_
naively as the equivalence predicate on data values for verification. RealLabel is
only used to declare the 17 constants. In other places in the specification, Label
is used.

5.3 Assignments to Shared Variables

Since the Bakery protocol does not assume atomic reads and writes to shared
variables, we cannot model an assignment (x := E;) to a shared variable as one
transition. The assignment is modeled as two or more transitions. The two or
more transitions model the following things:

– Zero or more transitions model the calculation of the expression E. If it is
not necessary to divide the calculation into multiple steps such that E is a
data value such as 0, no transitions are used.

– One transition models the situation that the assignment has started but not
finished.

– One transition models the situation that the assignment has finished.

Let beginWtX and endWtX be the last two transitions, and x be the observer
with which the value of the variable x is obtained. One of the equations defining
beginWtX looks like

ceq x(beginWtX(S,I)) = anArbVal if c-beginWtX(S,I) .

and one of the equations defining endWtX looks like

ceq x(endWtX(S,I)) = theValOfX if c-endWtX(S,I) .

where S is a CafeOBJ variable of a hidden sort denoting the state space, I is a
CafeOBJ variable of a visible sort denoting process identifications, anArbVal is
a term denoting an arbitrary value of the visible sort, and theValOfX is a term
denoting the values obtained by calculating E. In calSBakery, anArbVal is an
arbitrary natural number, which is represented as a term next(v), where v is a
natural number.

When another process J than I tries to read the variable x in the state
beginWtX(S,I), which corresponds to a situation where a J’s read to x overlaps
an I’s write to x , the value obtained by J is arbitrary.

5.4 Choice of Arguments in an Arbitrary Order

The arguments of the maximum function can be read in any order. One way
to respect the arbitrary choice of arguments and calculate maximum(number [1],
. . . ,number [N]) is as follows:

194 K. Ogata and K. Futatsugi

1. Set temporary variables tmp and m to {1, . . . , N} and 0.
2. If tmp is empty, then the calculation is done and m contains the result;

otherwise go to 3.
3. Choose and delete an arbitrary number k from tmp, set m to max(m, k),

and go to 2.

Three transitions are used to model the calculation: setTmp, checkLC and
findMax. Let tmp and m be the observers with which the values of tmp and m
are obtained. Let step1, step2 and step3 denote the locations corresponding to
the three steps described above, respectively. Let step4 denotes the location to
which the process moves after finishing the calculation. Let pc be the observer
that returns the location where the process is.

Some of the equations defining setTmp look like

ceq pc(setTmp(S)) = step2 if c-setTmp(S) .
ceq tmp(setTmp(S)) = mkSet(numOfProcs) if c-setTmp(S) .
ceq m(setTmp(S)) = 0 if c-setTmp(S) .

some of the equations defining checkLC look like

ceq pc(checkLC(S)) = (if empty?(tmp(S)) then step4 else step3 fi)
if c-checkLC(S) .

eq tmp(checkLC(S)) = tmp(S) .
eq m(checkLC(S)) = m(S) .

and some of the equations defining findMax look like

ceq pc(findMax(S,K)) = step2 if c-findMax(S,K) .
ceq tmp(findMax(S,K)) = del(tmp(S),K) if c-findMax(S,K) .
ceq m(findMax(S,K)) = max(m(S),K) if c-findMax(S,K) .

where S is a CafeOBJ variable of a hidden sort denoting the state space, K
is a CafeOBJ variable of Nat, c-setTmp(S) is pc(S) = step1, c-checkLC(S)
is pc(S) = step2, and c-findMax(S,K) is pc(S) = step3 and K \in tmp(S).
The transition findMax arbitrarily chooses a natural number K that is in tmp(S).

5.5 Observers and Transitions

Seven observers are used, which are declared as follows:

bop pc : Sys Nat -> Label bop choosing : Sys Nat -> Nat
bop number : Sys Nat -> Nat bop j : Sys Nat -> Nat
bop tmp : Sys Nat -> NatSet bop m : Sys Nat -> Nat
bop rand : Sys -> Nat

pc returns the location where a given process is in a given state. choosing,
number and j correspond to the variables found in the bakery protocol. tmp and
m are used to model the calculation of maximum(number [1], . . . ,number [N]).
rand returns an arbitrary natural number, which is used to model assignments
to shared variables.

Formal Analysis of the Bakery Protocol 195

l1: beginWtCh1 −→ L1: choosing [i] := 1;
l2: endWtCh1

l3: setTmp −→ number [i] := 1 + maximum(number [1], . . . , number [N]);
14: checkLC1
15: findMax
16: beginWtNum1
17: endWtNum1

18: beginWtCh2 −→ choosing [i] := 0;
19: endWtCh2

110: setJ −→ for j = 1 step 1 until N do
111: checkLC2 begin
112: checkCh L2: if choosing [j] �= 0 then goto L2;
113: checkNum L3: if number [j] �=0 and (number [j], j)< (number [i], i)

then goto L3;
end;

cs: execCS −→ critical section;

l14: beginWtNum2 −→ number [i] := 0;
l15: endWtNum2

ncs: execNCS −→ nonciritcal section;

ncs: tryCS −→ goto L1;

Fig. 2. Correspondence between transitions and the protocol

18 transitions are used, which are declared as follows:

bop beginWtCh1 : Sys Nat -> Sys bop endWtCh1 : Sys Nat -> Sys
bop setTmp : Sys Nat -> Sys bop checkLC1 : Sys Nat -> Sys
bop findMax : Sys Nat Nat -> Sys
bop beginWtNum1 : Sys Nat -> Sys bop endWtNum1 : Sys Nat -> Sys
bop beginWtCh2 : Sys Nat -> Sys bop endWtCh2 : Sys Nat -> Sys
bop setJ : Sys Nat -> Sys bop checkLC2 : Sys Nat -> Sys
bop checkCh : Sys Nat -> Sys bop checkNum : Sys Nat -> Sys
bop execCS : Sys Nat -> Sys
bop beginWtNum2 : Sys Nat -> Sys bop endWtNum2 : Sys Nat -> Sys
bop execNCS : Sys Nat -> Sys bop tryCS : Sys Nat -> Sys

Figure 2 shows the correspondence between the 18 transitions and the bakery
protocol in the ALGOL style. The first 16 labels represented by the 16 constants
l1, l2, . . . , l15 and cs correspond to the first 16 transitions, respectively. The
label ncs correspond to both execNCS and tryCS.

196 K. Ogata and K. Futatsugi

-- setTmp

eq c-setTmp(S,I) = (pc(S,I) = l3) .

ceq pc(setTmp(S,I),J)

= (if I = J then l4 else pc(S,J) fi) if c-setTmp(S,I) .

eq choosing(setTmp(S,I),J) = choosing(S,J) .

eq number(setTmp(S,I),J) = number(S,J) .

eq j(setTmp(S,I),J) = j(S,J) .

ceq tmp(setTmp(S,I),J)

= (if I = J then mkSet(numOfProcs) else tmp(S,J) fi)

if c-setTmp(S,I) .

ceq m(setTmp(S,I),J)

= (if I = J then 0 else m(S,J) fi) if c-setTmp(S,I) .

eq rand(setTmp(S,I)) = rand(S) .

bceq setTmp(S,I) = S if not c-setTmp(S,I) .

-- checkLC1

eq c-checkLC1(S,I) = (pc(S,I) = l4) .

ceq pc(checkLC1(S,I),J)

= (if I = J then (if empty?(tmp(S,I)) then l6 else l5 fi)

else pc(S,J) fi) if c-checkLC1(S,I) .

eq choosing(checkLC1(S,I),J) = choosing(S,J) .

eq number(checkLC1(S,I),J) = number(S,J) .

eq j(checkLC1(S,I),J) = j(S,J) .

eq tmp(checkLC1(S,I),J) = tmp(S,J) .

eq m(checkLC1(S,I),J) = m(S,J) .

eq rand(checkLC1(S,I)) = rand(S) .

bceq checkLC1(S,I) = S if not c-checkLC1(S,I) .

-- findMax

eq c-findMax(S,I,K) = (pc(S,I) = l5 and K \in tmp(S,I)) .

ceq pc(findMax(S,I,K),J)

= (if I = J then l4 else pc(S,J) fi) if c-findMax(S,I,K) .

eq choosing(findMax(S,I,K),J) = choosing(S,J) .

eq number(findMax(S,I,K),J) = number(S,J) .

eq j(findMax(S,I,K),J) = j(S,J) .

ceq tmp(findMax(S,I,K),J)

= (if I = J then del(tmp(S,I),K) else tmp(S,J) fi)

if c-findMax(S,I,K) .

ceq m(findMax(S,I,K),J)

= (if I = J then max(m(S,I),number(S,K)) else m(S,J) fi)

if c-findMax(S,I,K) .

eq rand(findMax(S,I,K)) = rand(S) .

bceq findMax(S,I,K) = S if not c-findMax(S,I,K) .

Fig. 3. Definitions of transitions (1)

setTmp, checkLC1 and findMax correspond to maximum(number [1], . . . ,
number [N]). beginWtNum1 and endWtNum1 correspond to the assignment of the
value obtained by incrementing the result of the calculation to number [i].

Formal Analysis of the Bakery Protocol 197

-- beginWtNum1

eq c-beginWtNum1(S,I) = (pc(S,I) = l6) .

ceq pc(beginWtNum1(S,I),J)

= (if I = J then l7 else pc(S,J) fi) if c-beginWtNum1(S,I) .

eq choosing(beginWtNum1(S,I),J) = choosing(S,J) .

ceq number(beginWtNum1(S,I),J)

= (if I = J then rand(S) else number(S,J) fi) if c-beginWtNum1(S,I) .

eq j(beginWtNum1(S,I),J) = j(S,J) .

eq tmp(beginWtNum1(S,I),J) = tmp(S,J) .

eq m(beginWtNum1(S,I),J) = m(S,J) .

ceq rand(beginWtNum1(S,I)) = next(rand(S)) if c-beginWtNum1(S,I) .

bceq beginWtNum1(S,I) = S if not c-beginWtNum1(S,I) .

-- endWtNum1

eq c-endWtNum1(S,I) = (pc(S,I) = l7) .

ceq pc(endWtNum1(S,I),J)

= (if I = J then l8 else pc(S,J) fi) if c-endWtNum1(S,I) .

eq choosing(endWtNum1(S,I),J) = choosing(S,J) .

ceq number(endWtNum1(S,I),J)

= (if I = J then s(m(S,I)) else number(S,J) fi) if c-endWtNum1(S,I) .

eq j(endWtNum1(S,I),J) = j(S,J) .

eq tmp(endWtNum1(S,I),J) = tmp(S,J) .

eq m(endWtNum1(S,I),J) = m(S,J) .

eq rand(endWtNum1(S,I)) = rand(S) .

bceq endWtNum1(S,I) = S if not c-endWtNum1(S,I) .

Fig. 4. Definitions of transitions (2)

setJ corresponds to the assignment of 1 to the process i’s local variable j.
checkLC2 corresponds to the loop termination check. checkCh and checkNum
correspond to the first and second conditional statements in the inner loop of
the protocol, respectively.

5.6 Definitions of Transitions

We cannot show all equations defining the 18 transitions due to the space limita-
tion. We show the equations defining setTmp, checkLC1, findMax, beginWtNum1
and endWtNum1 in Fig. 3 and Fig. 4. Lines starting with “--” are comments.

6 Verification Based on the Specification

We describe the mechanized proof that SBakery satisfies the mutual exclusion
property based on the specification of SBakery. The proof is conducted by writing
proof socres in CafeOBJ and executing them with the CafeOBJ system. Proof
scores are proofs or proof plans written in an algebraic specification language
such as CafeOBJ.

198 K. Ogata and K. Futatsugi

6.1 Formalization of the Mutual Exclusion Property

The mutual exclusion property can be stated as there is at most one process
in the critical section at any given moment. This can be rephrased as if there
are processes in the critical section, then they are identical. The property is
formalized as follows:

eq inv1(S,P,Q) = (isPid(P) and isPid(Q) and
pc(S,P) = cs and pc(S,Q) = cs implies P = Q) .

Since SBakery does not explicitly disallow processes whose identifications are not
in {1, . . . , N} to participate in the protocol, we need to have isPid(P) and
isPid(Q) as part of the premises.

What to do is to prove inv1(S,P,Q) for all reachable states S and all natural
numbers P and Q. The proof is done by induction on the structure of the reachable
state space. Then, we declare the constant istep1 of Bool, which is defined as
“eq istep1 = inv1(s,p,q) implies inv1(s’,p,q) .”, where s is a constant
of Sys denoting an arbitrary state, s’ is a constant of Sys denoting an arbitrary
successor state of s, and p and q are constants of Nat denoting arbitrary natural
numbers. We suppose that the importation of a module, say ISTEP, makes those
operators, equations and constants available.

6.2 Lemmas of the Verification

The verification needs to prove that 12 more state predicates are invariant wrt
SBakery. The 12 state predicates are shown in Table 1. The predicates inWS2,
inWS&CS, inCM and inZS are defined as follows:

Predicate Definition

inWS1(L) L = l8 or-else L = l9 or-else L = l10

inWS2(L) L = l11 or-else L = l12 or-else L = l13

inWS(L) inWS1(L) or-else inWS2(L)

inWS&CS(L) inWS(L) or-else L = cs or-else L = l14

inCM(L) L = l4 or-else L = l5 or-else L = l6 or-else L = l7

inZS(L) L = ncs or-else L = l1 or-else L = l2 or-else L = l3

or-else L = l4 or-else L = l5 or-else L = l6

Instead of _or_, _or-else_ is used to prevent Boolean terms from fully reducing
to their exclusive-or normal forms.

6.3 Proof Score of inv1

Let us take a close look at the protocol to check which transitions preserve inv1
and which do not seem. In the induction case for a transition that does not seem
to preserve inv1, we may need lemmas.

All transitions except for checkLC2 preserve inv1. This is because they change
pc(s,p) for some process identification p to a value that is different from cs or do
not change the value returned by any observer. In the former, the change makes
the premise of inv1 false, namely making inv1 true. In the latter, inv1 is clearly
preserved. We still need to prove the induction case for each transition. But, such

Formal Analysis of the Bakery Protocol 199

Table 1. The lemmas used in the verification

Lemma Definition

inv2(S,P,J) (isPid(P) and inWS2(pc(S,P)) and 0 < J and J < j(S,P)

and inWS&CS(pc(S,J)) and not(J = P))

implies < number(S,P),P > < < number(S,J),J >

inv3(S,P,J) (isPid(P) and pc(S,P) = cs and 0 < J and J < s(numOfProcs)

and inWS&CS(pc(S,J)) and not(J = P))

implies < number(S,P),P > < < number(S,J),J >

inv4(S,P) inWS&CS(pc(S,P)) implies 0 < number(S,P)

inv5(S,P,Q) (isPid(P) and isPid(Q) and inCM(pc(S,Q))

and (inWS2(pc(S,P)) or-else pc(S,P) = cs)

and not(P \in tmp(S,Q)) and Q < j(S,P) and not(P = Q))

implies (number(S,P) = m(S,Q) or number(S,P) < m(S,Q))

inv6(S,P) (pc(S,P) = l6 or-else pc(S,P) = l7) implies empty?(tmp(S,P))

inv7(S,P) inWS2(pc(S,P))

implies (j(S,P) = s(numOfProcs) or-else j(S,P) < s(numOfProcs))

inv8(S,P) pc(S,P) = cs implies j(S,P) = s(numOfProcs)

inv9(S,P) (isPid(P) and isPid(j(S,P)) and inCM(pc(S,j(S,P)))

and pc(S,P) = l13 and not(P \in tmp(S,j(S,P))) and not(P = j(S,P))

and (number(S,j(S,P)) = 0 or-else

not(< number(S,j(S,P)),j(S,P) > < < number(S,P),P >)))

implies (number(S,P) = m(S,j(S,P)) or number(S,P) < m(S,j(S,P)))

inv10(S,P) (inCM(pc(S,j(S,P))) and pc(S,P) = l12 and choosing(S,j(S,P)) = 0)

implies (number(S,P) = m(S,j(S,P)) or number(S,P) < m(S,j(S,P)))

inv11(S,P) (inCM(pc(S,P)) or-else pc(S,P) = l3)

implies not(choosing(S,P) = 0)

inv12(S,P) inZS(pc(S,P)) implies number(S,P) = 0

inv13(S,P) (pc(S,P) = l12 or-else pc(S,P) = l13)

implies j(S,P) < s(numOfProcs)

a thought experiment makes it clear that only case splitting can discharge the
induction case for all transitions except for checkLC2 but we may also need
lemmas for checkLC2.

Let us consider the following proof passage (a fragment of a proof score):

open ISTEP
-- arbitrary values
op i : -> Nat .

-- assumptions
-- eq c-checkLC2(s,i) = true .
eq pc(s,i) = l11 .
--
eq p = i .
eq (q = i) = false .
eq j(s,i) = s(numOfProcs) .
eq pc(s,q) = cs .

-- successor state

200 K. Ogata and K. Futatsugi

eq s’ = checkLC2(s,i) .
-- check
red istep1 .

close

The command open makes a temporary module in which a given module (ISTEP
in this case) is imported, and the command close destroys such a module. The
constant i is used to denote an arbitrary natural number. The constant s is
used to denote an arbitrary state in which the first five equations hold. The
last equation says that s’ is an arbitrary checkLC2-successor state of s. The
command red reduces a given term.

Since pc(s’,p) equals cs, pc(s’,q) equals cs and p does not equal q, if p and
q are used as process identifications and s is reachable, then inv1 is not invariant
wrt SBakery. We need to conjecture lemmas to discharge the proof passage.

A close inspection of the bakery protocol allows us to conjecture the following
two statements: for all reachable states s, all process identifications p and all
natural numbers q,

1. If pc(s,p) is l1, l2 or l3, pc(s,q) is l8, . . . , cs or l14, q is not p, and q is
greater than 0 and less than j(s,p), then < number(s,p),p > is less than
< number(s,q),q >.

2. If pc(s,p) is cs, pc(s,q) is l8, . . . , cs or l14, q is not p, and q is greater
than 0 and less than s(numOfProcs), then < number(s,p),p > is less than
< number(s,q),q >.

Both statements roughly say that if it has been decided that p has high priority
over q when p is in the inner loop of the protocol, the situation lasts while p is
in the inner loop or in the critical section. They corresponds to inv2 and inv3
in Table 1, respectively.

Instead of istep1, we reduce inv2(s,p,q) and inv3(s,q,p) implies
istep1 in the proof passage, whose results is true. This is because if
both p and q are process identifications, inv2(s,p,q) and inv3(s,q,p) is
equivalent to < number[p],p > < < number[q],q > and < number[q],q > <
< number[q],q >, which reduces to false.

In the proof score of inv1, there is one more proof passage, which uses inv2
and inv3, to discharge the proof passage:

open ISTEP
op i : -> Nat .
eq pc(s,i) = l11 .
eq (p = i) = false .
eq q = i .
eq j(s,i) = s(numOfProcs) .
eq pc(s,p) = cs .
eq s’ = checkLC2(s,i) .
red inv2(s,q,p) and inv3(s,p,q) implies istep1 .

close

Comments are omitted. Any other proof passages do not use any lemmas.

Formal Analysis of the Bakery Protocol 201

6.4 Proof Score of inv2

All transitions except for endWtNum1, setJ and checkNum preserve inv2. This
is because although they may change pc(s,p) for some process identification,
they do not change the truth value of inv2. setJ may change pc(s,p) for some
process identification to l11 from l10, but if it does, it sets j(s,p) to s(0),
which makes the premise of inv2 false and then makes inv2 true. We may need
lemmas in the induction case for endWtNum1 and checkNum.

Let us consider the following proof passage:

open ISTEP
-- arbitrary values
op i : -> Nat .

-- assumptions
-- eq c-endWtNum1(s,i) = true .
eq pc(s,i) = l7 .
--
eq (p = i) = false .
eq j = i .
eq number(s,p) < s(m(s,i)) = false .
eq (number(s,p) = s(m(s,i)) and p < i) = false .
eq 0 < p = true .
eq p < s(numOfProcs) = true .
eq (pc(s,p) = l11 or-else pc(s,p) = l12

or-else pc(s,p) = l13) = true .
eq 0 < i = true .
eq i < j(s,p) = true .
eq (j(s,p) = s(numOfProcs) or-else j(s,p) = numOfProcs

or-else j(s,p) < numOfProcs) = true .
eq i < s(numOfProcs) = true .
eq tmp(s,i) = empty .

-- successor state
eq s’ = endWtNum1(s,i) .

-- check
red istep2 .

close

CafeOBJ returns false for this proof passage. If inv2 is invariant wrt SBakery,
an arbitrary state s characterized by the first 13 equations must be unreachable.
We need to find lemmas to show that s is unreachable.

A close inspection of the bakery protocol allows us to conjecture the following
statement: for all reachable states s and all process identifications p, q,

1. If pc(s,p) is l1, l2, l3 or cs, pc(s,q) is l4, . . . , l7, q is not p, q is less than
j(s,p) and p is not in tmp(s,p), then number(s,p) is less than or equal to
m(s,q).

The statement roughly says that if it has been decided that p has high pri-
ority over q when p is in the inner loop of the protocol and q is calculating

202 K. Ogata and K. Futatsugi

maximum(number [1], . . . ,number [N]), the situation lasts while p is in the inner
loop or in the critical section and q is calculating the expression. The statement
corresponds to inv5 in Table 1.

inv5(s,p,j) reduces to false in the proof passage, which means that if
inv5 is invariant wrt SBakery, an arbitrary state s characterized by the first 13
equations in the proof passage is unreachable. Therefore, inv5 discharges the
proof passage.

In addition to inv5, the induction case where endWtNum1 is considered needs
inv6 and inv7 shown in Table 1. The induction case for checkNum needs inv4
shown in Table 1. The induction case where other transitions are considered does
not need any lemmas.

6.5 Other Proof Scores

All the other lemmas except for inv10 are proved by induction on the structure
of the reachable state space. A simple logical calculation deduces inv10 from
inv11, which is also done by writing a proof score. The proofs of some lemmas
also need lemmas, which are as follows: (1) inv3: inv2, inv6 inv5 and inv8;
(2) inv4: no lemmas; (3) inv5: inv8; (4) inv6: no lemmas; (5) inv7: inv13; (6)
inv8: no lemmas; (7) inv9:inv10 and inv12; (8) inv11: no lemmas; (9) inv12:
no lemmas; (10) inv13: inv7. The verification also needs several lemmas on
natural numbers.

7 Discussion

7.1 Choice of Arguments in an Arbitrary Order

We have described a way to formalize choice of arguments in an arbitrary order
in Subsect. 5.4. Another seemingly possible way to do so, which we first came up
with, is to use the operator choose declared and defined as follows:

op choose : NatSet -> Nat
eq choose(X S) = X .

where X and S are CafeOBJ variables of Nat and NatSet, respectively.
We thought that the equation successfully formalized an arbitrary choice of a

natural number X among the set of natural numbers in which the natural number
was. But, the equation makes all natural numbers identical. This is because since
the juxtaposition operator __ is associative and commutative, x y xs equals y
x xs where x and y are arbitrary natural numbers and xs is an arbitrary set
of natural numbers and then choose(x y xs) equals choose(y x xs), which
leads to the equivalence of x and y due to the equation.

7.2 Lemmas on Data

The verification also needs lemmas on natural numbers. There are at least two
ways to declare lemmas on data such as natural numbers in the OTS/CafeOBJ

Formal Analysis of the Bakery Protocol 203

method. They can be declared as (1) standard (conditional) equations and (2)
Boolean terms. An example of the first solution is “eq (X < Y and Y < X) =
false .” and an example of the second solution is “eq natLem7(X,Y,Z) = (X
< Y and Y < Z implies X < Z) .”. Both lemmas are used in the verification.

Both solutions have pros and cons. The first solution’s good and bad points
are as follows:

Good points. Basically lemmas as standard equations can be used automat-
ically by reduction and users do not care about where lemmas should be
used.

But, there are some lemmas, which cannot be used automatically by re-
duction. An example is “eq X < Z = true if X < Y and Y < Z .”. This
is because the variable Y in the condition does not occur on the left-hand
side of the equation.

Bad points. Lemmas as standard equations may affect confluence and termi-
nating of specifications. We suppose that we use the lemma “eq X < Y and
Y < s(X) = false .”. If we also declare the lemma “eq Y < s(X) = (Y
= X or-else Y < X) .”, the specification becomes nonconfluent. The first
lemma should be modified as “eq X < Y and (Y = X or-else Y < X) =
false .”.

The second solution’s good and bad points are as follows:

Good points. Lemmas as Boolean terms do not affect confluence and termi-
nating of specifications.

Bad points. Lemmas as Boolean terms are not used automatically by reduc-
tion. Users need to care about where lemmas should be used.

Since lemmas should be used explicitly, however, the second solution al-
lows users to understand the reason why lemmas should be used and makes
proofs more traceable.

8 Related Work

The bakery protocol has been often used as a benchmark to demonstrate that
proposed verification methods and/or tools are powerful enough. Among such
methods and tools are [3,4,5].

Mori, et al. [3] proves with a resolution-based theorem prover implemented
on top of the CafeOBJ system that a simplified version of the protocol satisfies
the mutual exclusion property. They assume that N processes participate in
the protocol as we do. Their way to model the protocol is similar to ours. The
resolution-based theorem prover could be used to proves that SBakery satisfies
the mutual exclusion protocol.

Meseguer, et al. [4] proves with an abstraction method and the Maude LTL
model checker [17,18] that a simplified version of the protocol satisfies the mutual
exclusion property. They only consider that two processes participate in the
protocol. Their verification technique is based on rewriting like ours. But, their

204 K. Ogata and K. Futatsugi

way to specify state machines is different from ours. Their method needs to fix
a concrete number, say 2, of processes participating in the protocol. Although
it is possible to represent nonatomic reads and writes in their method, it does
not seem clear to come up with a good abstraction when nonatomic reads and
writes are taken into account.

de Moura, et al. [5] proves with the SAL [19] implementation of k-induction
that a simplified version of the protocol satisfies the mutual exclusion property.
The implementation uses an SMT-based bounded model checker. They only
consider that two processes participate in the protocol. Their way to specify
state machines needs to fix a concrete number, say 2, of processes participating
in the protocol like the method used in [4]. It does not seem clear to model
nonatomic reads and writes because it does not seem clear to express arbitrary
values.

All the simplified versions of the protocol assume that a read and a write to
a shared variable are performed exclusively. The true bakery protocol has been
rarely used.

Lamport gives an informal proof that the bakery protocol satisfies some prop-
erties including the mutual exclusion one [2]. He also gives a more rigorous but
nonassertional proof that a variant of the bakery protocol satisfies the mutual
exclusion property [6]. The nonassertional proof does not assume any atomicity,
but uses as axioms some relations between reads and writes to shared variables.

He gives an assertional proof that the bakery protocol satisfies the mutual
exclusion protocol [7]. The proof does not assume any atomicity, either. In the
proof, Lamport introduced the predicate transformers win (the weakest invariant
operator) and sin (the strongest invariant operator), which generalize wlp (the
weakest liberal precondition operator) and sp (the strongest postcondition opera-
tor). Statements such as assignments that constitute the protocol are represented
by (nonatomic) operations, which basically consist of atomic operations. But, the
proof does not assume what atomic operations constitute the operation denoting
each statement of the protocol. The proof revealed the two hidden assumptions
that the assignment (number [i] := 1 + maximum(number [1], . . . ,number [N]))
sets number [i] (1) positive and (2) greater than number [j], even if it is executed
while the value of number [k] is being changed, for k �= i, j.

We assume some atomicity, namely that every transition is atomic. But,
we do not make an assumption that reads and writes to shared variables are
atomic. In our abstract model of the protocol, the assignment (number [i] :=
1 + maximum(number [1], . . . ,number [N])) is represented by five transitions,
while it is represented by a nonatomic operation in the Lamport’s abstract
model. Our proof does not need the two hidden assumptions. This is because
our abstract model is more concrete than the Lamport’s abstract model. Neither
the Lamport’s assertional and nonassertional proofs do not seem to have been
mechanized, although they could be.

Lamport also uses multiple atomic transitions (or atomic operations) to repre-
sent a nonatomic assignment to a shared variable in [8]. He defines a nonatomic
assignment of a value v to a shared variable x by the two atomic assignments

Formal Analysis of the Bakery Protocol 205

x :=? and x := v. When x equals ?, a read to x obtains an arbitrary value,
which needs to change the semantics of reads to shared variables. He proves that
the bakery protocol satisfies some safety and liveness properties with consider-
ation of nonatomic reads and writes. The proof does not need the two hidden
assumptions.

Our abstract model is similar to the Lamport’s one described in [8]. Our
abstract model is written in an algebraic specification language, however, while
his is written as a flowchart. The expressiveness of an algebraic specification
language allows us to represent an arbitrary natural number as a term. Therefore,
we do not need to change the semantics of reads to shared variables.

Another way to define a nonatomic assignment to a shared variable by mul-
tiple atomic transitions (or atomic operations) is given in [20]. A nonatomic
assignment of a value v to a shared variable x is represented as a nondetermin-
istic program fragment in which x is incremented (and decremented) arbitrarily
but finitely many times and finally x is set to v. This solution does not need to
change the semantics of reads to shared variables.

9 Conclusion

We have described a fully formal proof that the bakery protocol satisfies the
mutual exclusion protocol. The proof has been mechanized with CafeOBJ. The
CafeOBJ system has been used as an interactive proof assistant. Nonatomic
reads and writes to shared variables have been formalized by representing an
assignment to a shared variable with multiple atomic transitions. Our formal
model of the protocol has states in which a shared variable is being modified. A
read to the variable in such states obtains an arbitrary value, which is represented
as a CafeOBJ term.

One piece of our future work is to conduct the verification based on the
specification where integers are used instead of natural numbers. Another one
is to prove that the protocol satisfies other properties such as the lockout (or
starvation) freedom property, which is a liveness property.

References

1. Dijkstra, E.W.: Solution of a problem in concurrent programming control.
CACM 8, 569 (1965)

2. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem.
CACM 17, 453–455 (1974)

3. Mori, A., Futatsugi, K.: Cafeobj as a tool for behavioral system verification. In:
Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 2–16. Springer, Heidelberg (2003)

4. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstraction. In: Baader, F.
(ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg (2003)

5. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 14–26. Springer, Heidelberg (2003)

206 K. Ogata and K. Futatsugi

6. Lamport, L.: A new approach to proving the correctness of multiprocess programs.
ACM TOPLAS 1, 84–97 (1979)

7. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM
TOPLAS 12, 396–428 (1990)

8. Lamport, L.: Proving the correctness of multiprocess programs. IEEE TSE SE-3,
125–143 (1977)

9. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

10. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning,
and Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

11. Diaconescu, R., Futatsugi, K.: CafeOBJ report: The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in
Computing, vol. 6. World Scientific, Singapore (1998)

12. Peterson, G.L.: Myths about the mutual exclusion problem. IPL 12, 115–116 (1981)
13. Anderson, T.E.: The performance of spin lock alternatives for shared-memory mul-

tiprocessors. IEEE TPDS 1, 6–16 (1990)
14. Mellor-Crummery, J.M., Scott, L.: Algorithms for scalable synchronization on

shared-memory multiprocessors. ACM TOCS 9, 21–65 (1991)
15. Hsiang, J., Dershowitz, N.: Rewrite methods for clausal and nonclausal theorem

proving. In: Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 331–346. Springer,
Heidelberg (1983)

16. Nakamura, M., Futatsugi, K.: On equality predicates in algebraic specification lan-
guages. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711,
pp. 381–395. Springer, Heidelberg (2007)

17. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
4th WRLA. ENTCS, vol. 71. Elsevier, Amsterdam (2004)

18. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude – A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. In: Clavel, M., Durán, F., Eker,
S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C. (eds.) All About Maude
- A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg
(2007)

19. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

20. Anderson, J.H., Gouda, M.G.: Atomic semantics of nonatomic programs. IPL 28,
99–103 (1988)

Towards Abstraction for DynAlloy Specifications

Nazareno M. Aguirre1, Marcelo F. Frias2, Pablo Ponzio1, Brian J. Cardiff2,
Juan P. Galeotti2, and Germán Regis1

1 Department of Computer Science, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
and CONICET, Argentina

{naguirre,pponzio,gregis}@dc.exa.unrc.edu.ar
2 Department of Computer Science, FCEyN, Universidad de Buenos Aires and

CONICET, Argentina
{mfrias,bcardiff,jgaleotti}@dc.uba.ar

Abstract. DynAlloy is an extension of the Alloy language to better de-
scribe state change via actions and programs, in the style of dynamic
logic. In this paper, we report on our experience in trying to provide ab-
straction based mechanisms for improving DynAlloy specifications with
respect to SAT based analysis. The technique we employ is based on
predicate abstraction, but due to the context in which we make use of it,
is subject to the following more specific improvements: (i) since DynAl-
loy’s analysis consists of checking partial correctness assertions against
programs, we are only interested in the initial and final states of a com-
putation, and therefore we can safely abstract away some intermediate
states in the computation (generally, this kind of abstraction cannot be
safely applied in model checking), (ii) since DynAlloy’s analysis is in-
herently bounded, we can safely rely on the sole use of a SAT solver for
producing the abstractions, and (iii) since DynAlloy’s basic operational
unit is the atomic action, which can be used in different parts within
a program, we can reuse the abstraction of an action in different parts
of a program, which can accelerate the convergence in checking valid
properties.

We present the technique via a case study based on a translation of
a JML annotated Java program into DynAlloy, accompanied by some
preliminary experimental results showing some of the benefits of the
technique.

1 Introduction

The increasing dependability of human activities on software systems is lead-
ing us to accept that formal methods, once thought to be worthwhile only for
critical systems, are actually applicable and even necessary for a wider class
of systems. Indeed, there currently exist many tools and projects attempting
to bring together formal methods and widely used (less formal) software devel-
opment notations and methodologies (e.g., the works reported in [17,18,20], to
name a few). Two of the main limitations for using formal methods in practice
are that they require mathematically trained developers, and that their applica-
tion often involves the manual manipulations of mathematical expressions, both

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 207–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 N.M. Aguirre et al.

during modelling (specification) and analysis (e.g., by theorem proving). Alloy
[15] is a formal method that attempts to partly overcome these limitations. First,
it is based on a simple notation, with a simple relational semantics, which re-
sembles the modelling constructs of less formal object oriented notations, and
therefore is easier to learn and use for developers without a strong mathemat-
ical background. Second, it offers a completely automated SAT based analysis
mechanism, so that, in principle, no manual manipulations of mathematical ex-
pressions are necessary for analysing specifications. This is done at the expense of
losing certainty, since the Alloy tool cannot guarantee the validity of a property,
but only its validity in bounded (usually by a rather small bound) models [15].
Basically, given a system specification and a statement about it, the Alloy tool
exhaustively searches for a counterexample of this statement (under the assump-
tions of the system description), by reducing the problem to the satisfiability of
a propositional formula. Since the Alloy language is first-order, the exhaustive
search for counterexamples has to be performed up to certain bound k in the
number of elements in the universe of the interpretations. Thus, this analysis
procedure can be regarded as a validation mechanism, rather than a verification
procedure, since it cannot be used in general to guarantee the absence of coun-
terexamples for a theory. Nevertheless, this analysis mechanism is very useful in
practice, since it allows one to discover counterexamples of intended properties,
and if none is found, gain confidence about our specifications. This is similar
in spirit to testing, since one checks the truth of a statement for a number of
cases; however, as explained in [16], the scope of the technique is much greater
than that of testing, since the space of cases examined (usually in the order of
billions) is beyond what is covered by testing techniques, and it does not require
one to manually provide test cases.

Alloy belongs to the class of the so called model oriented formal methods.
Specifications in Alloy are described as abstract models of software systems.
These models are essentially composed of data domains and relations between
these domains, much in the style of schemata for data domains and operations in
Z [21]. As we and other researchers have advocated in the past, this is suitable
for building static models of software, but it is less appropriate for the dynamics
of systems, i.e., for describing executions and their intended properties [9]. This
problem has inspired the definition of an extension of Alloy, called DynAlloy
[10], that incorporates actions, understood as a general concept associated with
state change, and covering composite as well as atomic actions. Actions can be
composed as program terms in dynamic logic, i.e., via sequential composition,
non deterministic choice, iteration, etc. Moreover, one can provide partial cor-
rectness assertions about actions, which the DynAlloy Analyzer then translates
into Alloy for their SAT based analysis.

Abstraction is strongly related to simplicity and understandability of mod-
els, as well as to their analysability. Usually, models are driven by the first two
concerns, i.e., the modeller chooses the level of abstraction in his models try-
ing to faithfully characterise the aspects of software he is interested in, in the
most simple way possible. Typically, these models are suitable according to their

Towards Abstraction for DynAlloy Specifications 209

understandability, but not the most appropriate with respect to analysis. Indeed,
it is generally accepted that abstraction on models is crucial for the successful
automated analysis of specifications [3]. In this paper, we are concerned about
improving the abstraction of DynAlloy specifications for analysis. We present a
technique, which has been implemented in a prototypical tool, that allows us
to employ a version of predicate abstraction [12], an abstraction technique suc-
cessfully used for model checking, on DynAlloy specifications. Because of the
context in which we use predicate abstraction, we are able to take advantage of
the following improvements:

– Since DynAlloy’s analysis is based on checking partial correctness assertions
against programs, we are only interested in the initial and final states of
a computation, and therefore we can safely abstract away some intermedi-
ate states. We take advantage of this situation via a particular automated
use of program atomisation [11]. Notice that this kind of improvement can-
not be straightforwardly applied in model checking, since the abstraction of
intermediate states can lead to missing violations of safety properties.

– Since DynAlloy’s analysis is inherently bounded, we can safely rely on the
sole use of a SAT solver for producing the abstractions, as well as refining
these in a counterexample guided way.

– Since DynAlloy’s basic operational unit is the atomic action, which can be
used in different parts within a program, we can reuse the abstraction of an
action in different parts of a program, which can contribute to accelerating
convergence in checking valid properties.

Our presentation will be driven by a model resulting from a translation of
Java code. As it will be made clearer later on, this kind of model will enable us
to perform some of the transformations required for constructing and refining
an abstraction in a more efficient way. It will also enable us to present some
preliminary experimental results.

2 A Brief Introduction to Alloy and DynAlloy

In this section we present a brief introduction to Alloy and DynAlloy by means
of an example. A thorough description of Alloy can be found in [16].

Our case-study involves a program over sets (of characters) represented as
acyclic linked lists, without repeated elements. For representing these, we would
need a model of lists. In order to specify lists, a data type for the data stored in
the lists is necessary. We can then start by indicating the existence of a set (of
atoms) for data, which in Alloy is specified using a signature:

sig Data { }
This is a basic signature. We do not assume any special properties regarding the
structure of data. We can now specify what constitutes a list. A list consists of
a head (which is a node or may be a null reference), and nodes in turn consist
of a data value and an attribute next relating the current node to the next one
in a linked list:

210 N.M. Aguirre et al.

sig List { sig Node {
head : Node+NullValue val : Data,

} next : Node+NullValue
}

According to the semantics of Alloy, fields val and next are functional rela-
tions from Node objects to Data objects, and from Node objects to Node objects
(or to a constant NullValue), respectively. NullValue is a signature representing
a constant, namely the null reference, defined in the following way:

one sig NullValue { }
As the previous definitions show, signatures are used to define data domains

and their structure. The attributes of a signature denote relations. The dot
operator ‘·’ corresponds to relational composition, generalised to n-ary relations,
and having relational image as a special case. So, for example, given a set L (not
necessarily a singleton) of Node atoms, expression L.next denotes the relational
image of L under the relation denoted by next. This leads to a relational view
of the dot notation that preserves the intuitive navigational reading of dot, as
in object orientation.

Using signatures and fields, it is possible to build more complex expressions
denoting relations, with the aid of the Alloy operators. Operator ∼ denotes re-
lational transposition, ∗ denotes reflexive-transitive closure, and ^ denotes tran-
sitive closure of a binary relation. There are also binary operators. Operator
+ denotes union, & denotes intersection, and dot (.) denotes, as we mentioned
before, composition of relations. In all cases, the typing must be adequate. We
build formulae from expressions. Binary predicate in checks for inclusion, while
= checks for equality. From these (atomic) formulae we define more complex
formulae using standard first-order connectives and quantifiers. Negation is de-
noted by !. Conjunction, disjunction and implication are denoted by &&, || and
=>, respectively. Finally, quantifications have the form some a : A | α(a) and
all a : A | α(a). Formulae can be used as axioms that constrain models, called
facts. For example, the following fact:

fact AcyclicLists {
all l:List, n:Node | n in l.head.(*next) => n !in n.(^next)

}

constrains lists to be acyclic. Formulae can also be used in assertions, which are
properties to be analysed using the Alloy Analyzer. For instance, the following
assertion:

assert NextInjective {
all l: List, n1, n2: Node |

n1+n2 in l.head.*next && n1 != n2 => n1.next != n2.next
}

asserts that, for every pair of nodes in a list, if the nodes are different, then their
corresponding ‘next’ nodes are also different. One can also write parameterised
formulae, called predicates. For example, the following predicate:

Towards Abstraction for DynAlloy Specifications 211

pred nonEmpty(l: List) {
l.head != NullValue

}

characterises nonempty lists. In order to check an assertion, or ask for models
of a predicate, the specifier has to provide bounds for the maximum number of
elements to be considered for the domains. For instance, the command

check NextInjective for 5 but 3 Data, 3 Node

checks whether assertion NextInjective is true in all possible interpretations
with at most five lists, three data items and three nodes. The command

run nonEmpty for 1 List but 3 Data, 3 Node

asks for models of predicate nonEmpty (i.e., nonempty lists) with at most one
list, three data items and three nodes. It is also possible to check a formula for
an exact number of elements in a domain.

The Alloy Analyzer receives as input an Alloy model and the selection of
an assertion to be checked. Using the bounds on the data domains, a clever
translation converts the Alloy model and the (negation of the) assertion into a
propositional formula. A model (in the mathematical logic sense) of the resulting
propositional formula is then sought for, using off-the-shelf SAT solvers. If a
model is found by the SAT solver, it is converted back into a model of the
Alloy specification that refutes the validity of the assertion in the specification.
A similar procedure is employed for retrieving models satisfying predicates.

DynAlloy [10] is an extension of the Alloy specification language for describing
state change in a more convenient way (compared to the Alloy approach, which
uses predicates to specify state change). DynAlloy incorporates the notion of
atomic action as a basic mechanism for modifying the state (atomic actions
are similar to atomic statements in imperative programming languages). Atomic
actions are defined by means of preconditions and postconditions, given as Alloy
formulae. For instance, atomic actions for retrieving the first element in a list
and for removing the front element from a list (usually called Head and Tail,
respectively) may be specified as follows:

act Head(l:List, d:Data)
pre = { l.head != NullValue }
post = { d’ = (l.head).val }

act Tail(l:List)
pre = { l.head != NullValue }
post = { l’.head = (l.head).next }

The primed variables d’ and l’ in the specification of actions Head and Tail
denote the values of variables d and l in those states reached after the execution
of the actions. There is an important point in the definition of the semantics of
atomic programs. While actions may modify the value of all variables, we assume

212 N.M. Aguirre et al.

that those variables whose primed versions do not occur in the post condition
retain their corresponding input values. Thus, the atomic action Head modifies
the value of variable d, but l keeps its initial value.

From atomic actions we can build complex actions, also called programs, as
follows. If α is an Alloy formula, then α? is a test action (akin to the “assert”
construct in the Java programming language). The nondeterministic choice be-
tween two (not necessarily atomic) actions a1 and a2 is denoted by a1 +a2, while
their sequential composition is denoted by a1 ;a2. Finally, ∗ iterates actions. As
is customary, a partial correctness assertion of the form {α} p {β} is satisfied if,
for every state e that satisfies α, all the states reachable from e through program
p satisfy β. For instance, the following is a valid partial correctness assertion for
our case study:

{ l.head != NullValue }
Head(l, d) ; Tail(l)

{ (l.head).val = d’ and (l.head).next = l’.head }

One of the important characteristics of Alloy is that its specifications can be au-
tomatically analysed using the Alloy Analyzer. As we explained before, the Alloy
Analyzer allows one to automatically verify if a given assertion holds in all inter-
pretations associated with an Alloy model, with the domain sizes being bounded
by user provided bounds. DynAlloy specifications are also subject to automated
analysis. In [10], we show how DynAlloy specifications can be translated into
Alloy specifications, so that we can indirectly analyse DynAlloy specifications
using the Alloy Analyzer. In order to do this, the specifier only needs to provide
an extra bound, one to be associated with the maximum number of iterations
to be considered.

The case study model employed in this article originates from Java code.
Our translation from Java to DynAlloy adopts the object model of JAlloy [14]
in order to handle complex data. JAlloy translates Java programs directly to
Alloy models. The JAlloy model of signatures List and Node requires just basic
signatures (without fields)

sig List { } sig Node { }

and fields are defined as binary relations

head : List -> one (Node+NullValue)
val : Node -> one Data
next : Node -> one (Node+NullValue)

The modifier “one” forces these relations to be total functions. They can be
modified by the DynAlloy actions. An action SetNext, modelling the update of
the value of attribute next for a given node, can now be specified as follows:

act SetNext(n1,n2:Node+NullValue,next:Node->one(Node+NullValue))
pre = { n1 != NullValue }
post = { next’ = next ++ (n1 -> n2) }

where ++ is relational overriding.

Towards Abstraction for DynAlloy Specifications 213

/*@ private invariant

@ (\forall Node n; \reach(this.head).has(n); !\reach(n.next).has(n));

@*/

/*@ public normal_behavior

@ assignable theSet;

@ ensures this.theSet.equals(\old(this.theSet).difference(s.theSet));

@ also

@ private normal_behavior

@ assignable head;

@*/

public void removeAll(CharSet s) {

if (this.head != null) {

Node current = this.head;

Node prev = null;

while (current!=null) {

if (s.isMember(current.value)) {

if (prev!=null) prev.next = current.next;

else this.head = current.next;

} else prev = current;

current = current.next;

} } }

Fig. 1. JML-Annotated code to be analysed in this article

3 From JML–Annotated Java Code to DynAlloy

Finding the right case study for analysing our technique is a difficult task. Seek-
ing for such an appropriate case study, which would allow for a controlled increase
of code size, and to check some non trivial properties of the code under consid-
eration, we decided our case study to be a Java program solving the following
simple problem:

Given a linked list l (holding characters as information) and a set S of
characters as input, remove from l all nodes holding elements in S.

The actual code, including the corresponding JML annotations, is provided in
Fig. 1. This program, although simple, is in our opinion fairly adequate, since the
size of code can be increased in a controlled way by unrolling the loop required
for traversing the list as many times as deemed appropriate. Moreover, it also
allows us to check properties such as that the representation invariant, saying
that lists are acyclic, is preserved by this program, as well as checking other
related properties, such as that the elements removed are no longer part of the
list. Notice that expressing the former (see Fig. 1) requires quantification and
reachability predicates, which are constructs hard to analyse for most analysis
techniques.

In this section we will provide some details regarding how the translation
from annotated Java code to DynAlloy is performed, using parts of our case

214 N.M. Aguirre et al.

study. A more thorough description can be found in [8,13]. Our program involves
statements for assignment and attribute modification. These are modelled as
atomic DynAlloy actions, in the following way:

act assign(l:A, r:A) act SetF(l:A, r:B, F:A->one B)
pre { true } pre { l != NullValue }
post { l’ = r } post { F’=F++(l->r) }

In the definition of action SetF, the binary relation F gets modified by the action.
Complex programs are translated as follows:

P1 ; P2 -> T(P1);T(P2)
if (C) then P1 else P2 -> (C’?;(P1))+(!C’?;(P2))
while (C) P -> (C’?;P)*;!C’?

where C’ is the Alloy translation of predicate C. JML assertions are mapped to
Alloy formulae. For instance, the first representation invariant in our case study,
which constrains lists to be acyclic structures, is translated into the following
Alloy formula:

all n : Node n | n in this.head.(*next) => !(n in n.(^next)). (1)

This translation is completely automated.
If formula (1) is denoted by NoCycle(this, head, next, val), and P is the

DynAlloy program obtained from our case study (see Fig. 2), the problem to
solve is expressed as the following partial correctness assertion, that we will call
NoCyclePreserved:

{ NoCycle(this, head, next, val) }
P

{ NoCycle(this’, head’, next’, val’) }

In order to make the analysis simpler, we will make use of the following
DynAlloy atomic action (whose correctness should be checked at a later stage
against some implementation):

act isMember(result:boolean, s:set Char, c:Char)
pre { true }
post { result’ = true <=> c in s }

4 SAT-Based Predicate Abstraction for DynAlloy Models

We now present the mechanism employed in order to abstract DynAlloy spec-
ifications. As we mentioned, the mechanism is based on predicate abstraction
and counterexample guided abstraction refinement. We will assume that the
reader has some basic acquaintance with the subject as presented in [12,6].
Briefly, standard predicate abstraction works as follows. Given a transition sys-
tem P = 〈S, Init , τ〉, where S is the set of states, Init a formula characterising

Towards Abstraction for DynAlloy Specifications 215

act RemoveAll(this: List, curr, prev: Node+NullValue, S: set Char,

value: Node -> one Char, next: Node -> one (Node+NullValue),

head: List -> one (Node+NullValue))

01. (this.head != NullValue)?;

02. (assign(prev, NullValue);

03. assign(curr, this.head);

04. ((curr != NullValue)?;

05. (((

06. (curr.value in S)?;

07. ((prev != NullValue)?;

08. setNext(prev, curr.next, next)

09. +

10. (prev = NullValue)?;

11. setHead(thisValue, curr.next, head)

12.))

13. +

14. ((curr.value !in S)?;

15. assign(prev, curr)

16.))

17. assign(curr, curr.next)

18.)

19.)*;

20. (curr = NullValue)?

21.)

22. +

23. ((this.head = NullValue)?;

24. skip

25.)

Fig. 2. DynAlloy specification corresponding to program removeAll

the set of initial states, and τ a set of transitions (i.e., binary relations over S),
one starts by providing some predicates φ1, φ2, . . . , φn over S. The main idea is
to consider an abstraction QA of the lattice ℘(S) of state properties over S, to-
gether with two functions α : ℘(S) → QA and γ : QA → ℘(S), relating QA and
℘(S) in such a way that α(γ(QA)) = QA and, for every s ∈ ℘(S), s ⊆ γ(α(s)).
That is, the pair 〈α, γ〉 forms a Galois connection between QA and ℘(S). In
predicate abstraction, QA has a particular form, it is composed by the mono-
mials over n boolean variables B1, B2, . . . , Bn representing the truth values of
φ1, φ2, . . . , φn, respectively; a monomial is either true or false, or a conjunction
of literals (Bi or ¬Bi) in which each Bi appears at most once (positively or neg-
atively). This set clearly forms a lattice, where the atoms (which represent the
abstract states) are the canonical monomials, i.e., the monomials in which each
Bi appears exactly once. The concretisation function γ : QA → ℘(S) is simply
defined as γ(sA) = {s ∈ S|s |= sA[φi/Bi]} whereas the abstraction function is
given by:

α(s) =
∧

i∈1..n

{Bi|s |= φi} ∧
∧

i∈1..n

{¬Bi|s |= ¬φi}

216 N.M. Aguirre et al.

As explained in [12], this results in a more efficient way of calculating the abstract
model from a concrete one.

We would like to provide the above described abstraction mechanism for Dy-
nAlloy specifications. As we mentioned, atomic actions are the basic mechanism
for characterising state change in DynAlloy, and typically have the following
form:

act a(s: State)
pre { pre(s) }
post { post(s,s’) }

for some designated state signature State. In order to apply predicate abstrac-
tion, we need a number of predicates φ1(s), φ2(s), . . . , φn(s) over the state sig-
nature State. In our case, we consider as an initial set of abstraction predicates
the individual conjuncts in the postcondition of the assertion, and the conditions
extracted from the source code of the program (which appear in test actions in
the DynAlloy translation):

this.head != NullValue curr != NullValue
curr.value in S prev != NullValue

Now let us describe how the abstract DynAlloy program is represented. Since in
this case we have five predicates (the above four plus the postcondition of the
assertion), we can characterise the abstract state space by the following AState
Alloy signature:

sig AState { p0, p1, p2, p3, p4 : Boolean }

The idea behind our characterisation of the abstract DynAlloy program is, as the
reader might expect, that a particular atom of signature AState will represent
exactly one abstract state. It is easy to see what are the concrete states associated
with an abstract state s: those that satisfy exactly those φi’s for which s.pi is
true.

We now need to compute abstract actions characterising the abstract be-
haviour of each of the concrete atomic actions. Let us first consider atomic
actions in isolation. Abstracting the (concrete) precondition pre of a given ac-
tion a is not difficult. We need to decide which are the corresponding elements
of the abstract lattice QA, i.e., the monomials, better characterising pre. This
can be done simply by checking which of the φi’s and ¬φi’s are implied by pre.
For postconditions, on the other hand, the process is slightly more complicated.
The reason is that, as it is shown in the actions for our DynAlloy program, the
postconditions are not state formulae, but relations describing how the states
previous to the execution of the actions are related to the corresponding states
after the execution of the actions. Thus, what we actually need to check, for an
atomic action with precondition pre(s) and postcondition post(s,s’), is the
abstract state corresponding to the strongest postcondition of pre(s) according
to post(s,s’). We use the Alloy Analyzer in order to check these assertions.

Towards Abstraction for DynAlloy Specifications 217

The process just described for computing the abstraction of atomic actions,
although correct, generally leaves us with too coarse abstractions, which would
produce an important number of spurious counterexamples when checking the
abstract program, even when the property being checked is invalid. The reason
for this is that this kind of abstraction only takes into account the precondition
of the action, and not the information regarding the context in which the action
is used. We will use these abstractions as a starting point, and will compute the
abstractions using the following more sophisticated approach.

Suppose that we have to check a DynAlloy assertion of the form:

{ pre a } P { post a }

Notice that every DynAlloy assertion check needs two different bounds, one lim-
iting the size of the domains, and another one bounding loops. Let us consider
these to be kd and kl, respectively. We will start by unrolling the loops in P
according to bound kl, thus obtaining a sequential program PS , without loops.
Our abstraction process will consist of computing an abstract version of PS ’s
control graph. We will consider, initially, basic abstractions for all atomic ac-
tions computed as described above, in terms of their corresponding pre and post
conditions and using kd as a bound. Also, we will compute the abstraction of the
precondition pre a of the assertion, also using kd as a bound. We will then start
visiting PS ’s computation tree in a depth-first fashion; so, in each step we will
choose either a test action (which can be abstracted straightforwardly, since its
associated condition is among the abstraction predicates) or an atomic action a.
For this, we check whether, for its current abstract precondition (which is not
necessarily a canonical monomial), we have already computed its corresponding
abstract postcondition. If not, we concretise the current precondition, and com-
pute the abstraction of the corresponding concrete strongest postcondition (for
these checks, we also use kd as a bound). Since PS ’s computation tree is finite
and acyclic (due to the absence of loops, which we have previously unrolled),
this process is guaranteed to terminate. If we reach a final abstract state (a leaf
in the computation tree for the abstract version of PS) in which the abstraction
of the postcondition is not satisfied, then we found an abstract counterexample.
Notice that the postcondition of the assertion is precisely characterised in the
abstract program, since it is included in the set of abstraction predicates. If no
abstract counterexample trace is found, then the property has been checked valid
within the established bounds.

If an abstract counterexample is found, then we have to check whether it is
a spurious one or not. If it is not spurious, the property is invalid, and we find
a counterexample as the concretisation of the obtained abstract trace. If, on
the other hand, it is spurious, we employ a traditional counterexample guided
abstraction refinement as presented in [7]. We find the abstract state in which the
spurious counterexample “breaks” (i.e., where it cannot be further concretised),
and employ the predicate discovery approach as described in [7].

218 N.M. Aguirre et al.

Let us summarise this process of abstraction. It is composed of the following
steps:

1. Take program P and unroll the loops in it according to bound kl, obtaining
as a result a sequential program PS (both P and PS are concrete).

2. Compute the abstractions for pre a and post a, and for each of the atomic
actions, using the set of abstraction predicates available (initially, these are
the conjuncts of the postcondition in the concrete assertion and the condi-
tions in the program).

3. Start the verification process by visiting the computation tree for PS and
computing the corresponding abstract states along the traversal. Here, the
abstractions of the actions are used, and more detailed abstract pre- and
post-conditions are computed for their definitions when not previously con-
sidered abstract preconditions are found).

4. When a final abstract state (a leaf in the computation tree) is reached, there
are two possibilities.
(a) The abstract state satisfies the abstraction of the postcondition. In this

case, we continue the visit of the tree. If the whole computation tree has
been visited, then the property has been successfully checked (for the
given bounds).

(b) The abstract state violates the abstract postcondition. In this case, we
have found an abstract counterexample. We concretise the corresponding
trace, and if it corresponds to a concrete counterexample, the property
being checked is invalid. If not, the counterexample is spurious, and is
used to calculate a new abstraction predicate. We incorporate the new
predicate to our set of abstraction predicates, and go back to step 2.

It is important to notice how the above described abstraction mechanism
allows us to improve analysability. In the straightforward approach (without
abstraction), two variables make the size of the propositional formula resulting
from the DynAlloy assertion to be checked grow, namely kd and kl. Usually,
these two variables in combination make the formula too big to be handled with
the available resources. Using the above described abstraction mechanism, the
analysis is split into various checks in order to build the abstraction, each of which
is only affected by the kd bound. The only checkings affected by both bounds
are the ones corresponding to the concretisation of abstract counterexamples.
However, these are generally much simpler than checking the original program,
since the trace corresponding to an abstract counterexample is only a sequential
program with no branching nor loops (branching has an important negative
impact in checking DynAlloy’s assertions).

We present below some experimental results regarding the application of the
abstraction mechanism just described, in comparison with the straightforward
(no abstraction) SAT analysis. However, the described (traditional) abstraction
mechanism is not sufficient, and we will need to perform some optimisations
in order to gain an acceptable performance for the abstraction based analyses.
These optimisations are described in the next section.

Towards Abstraction for DynAlloy Specifications 219

5 Improving the Abstraction Based Analysis

In this section we present a few optimisations that we applied to the above
described traditional abstraction approach. The contribution, in terms of per-
formance in the analysis, that these optimisations provided are reported later
on, in the section on experimental results.

5.1 Program Atomisation

Program atomisation is an abstraction technique for DynAlloy programs that al-
lows us to contribute to scaling analysability up by replacing (arbitrary) complex
programs by atomic actions with the same behaviour. The analysis improves be-
cause the SAT-solver does not need to look for intermediate valid states matching
the program behaviour. Generally, the use of program atomisation is not fully
automated, although the way in which we will use it here, a restricted form,
enables us to fully automate it. In the context of this article, atomisation will
have a great impact, because the removal of intermediate states favours abstrac-
tion: intermediate states (when these are temporary) typically cause breaks in
spurious counterexamples, and possibly the introduction of further abstraction
predicates characterising the corresponding intermediate (temporary) state sit-
uations. We will automatically perform atomisation in order to abstract away
certain intermediate states, via the following atomisation policy:

Consider, as a program to be atomised, any maximal sub-path of the
control flow graph that does not involve tests.

Notice that program atomisation is applied before the program is unrolled ac-
cording to the bound on iteration.

We still have to provide a method for automatically building the atomisations.
Let us consider atomic actions A1 and A2 specified as follows:

{ Q(s) } { S(s) }
A1(s) A2(s)

{ R(s,s’) } { T(s,s’) }

The atomisation of the sequential composition A1 ; A2 is defined as the
atomic action A specified by:

{ Q(s) && (all st | R(s,st) => S(st)) }
A

{ some i | R(s,i) && T(i,s’) }

Notice that A’s precondition characterises exactly those states that satisfy the
precondition of A1, and upon execution of A1 lead only to states satisfying A2’s
precondition. On the other hand, the postcondition clearly models the sequential
composition of the behaviours of A1 and A2. We are only defining the atomisation
for the sequential composition of two actions. If more actions are to be atomised,
the process can be iterated. It is straightforward to prove that given actions

220 N.M. Aguirre et al.

act atomAssignPrevCurr(prev,prevVal,curr,currVal:Node+NullValue)

pre = { true }

post = { prev’ = prevVal && curr’ = currVal }

act atomSetNextAssCurr(l,r: Node+NullValue,next: Node->one(Node+NullValue),

curr,currVal: Node+NullValue)

pre = { l != NullValue }

post = { next’ = next++(l->r) && curr’ = currVal }

Fig. 3. Atomisations for program removeAll

A1, A2, A3, atomising first A1 and A2 (and the result with A3) yields an action
equivalent to the one resulting from first atomising A2 and A3. Moreover, in order
to simplify the resulting atomisation, notice that:

1. Whenever A2’s precondition is true, A’s precondition reduces to Q(s).
2. If A1 and A2 modify disjoint sets of state variables, we can proceed as follows.

Let the state variables s = S0 ∪ S1 ∪ S2, with S0, S1, S2 disjoint, and such
that A1 modifies S1 and A2 modifies S2. The postcondition then simplifies
to

R(S0 ∪ S1 ∪ S2, S0 ∪ S′
1 ∪ S2) && T(S0 ∪ S′

1 ∪ S2, S0 ∪ S′
1 ∪ S′

2).

We perform atomisation at the very beginning, and include simplifications as
the ones mentioned to be applied on the resulting atomisations. For our case-
study, the original DynAlloy program (see Fig. 2) is atomised using the actions
in Fig. 3.

5.2 Detection of Induction

Consider cases in which the program we are trying to check is of the form:

P = Init; (a0 + · · · + an)∗

with each ai not necessarily atomic. Moreover, suppose that we check the prop-
erty under consideration incrementally, i.e., we check the property for kl only
after we checked it for all loop bounds smaller than kl. In these cases, we can con-
sider the following rule in order to “prune” the construction of the computation
tree corresponding to PS in the verification and abstraction process:

if s is the current abstract state (at some point after initialisation), and
the abstraction of ai leaves us again in the abstract state s, then we
can stop building the abstract graph for PS after the last s, because the
abstract states resulting from the last s will necessarily be visited as
branches of the first s.

The idea behind this rule is graphically depicted in Figure 4. The fact that this
rule is applied only in incremental verifications is crucial, since it corresponds

Towards Abstraction for DynAlloy Specifications 221

Si

Si Sj Sk

a1 a2
a3

Si Sj Sk

a1 a2 a3

Fig. 4. Graphical description of the pruning rule for detecting convergence in invariant
checks.

essentially to performing a kind of iterative deepening visit of the abstract graph,
looking for violations of the property (then we only advance in the process if
we have not found shorter violations). Also, the fact that atomic actions are
repeated in the graph, so that we can use the abstractions produced for these in
other parts of the graph, is relevant for this rule. Notice also that, given that we
apply program atomisation prior to performing the loop unrolls, it is guaranteed
that we are not abstracting away final states, only states which are intermediate
within loops.

The case in which we are checking whether the program preserves the repre-
sentation invariant of sets over linked lists, i.e., whether it leaves the resulting
list acyclic and with no repeated elements, corresponds to the above described
schema. As we describe below, in the section regarding experimental results, this
rule allowed us to find a convergence of the representation invariant property af-
ter four loop unrolls. The reason for this is that all abstract final states after
four loop unrolls are “already visited” states in the computation tree, enabling
us to infer that further loop unrolls cannot lead to violations of the property.

6 Experimental Results

For running the experiments we used a personal computer with a 2Ghz Core
2 Duo processor, with 2GB of RAM, running the Alloy Analyzer 4.1.5 under
Ubuntu GNU/Linux 2.6.22, 32 bits.

We attempted to verify the following assertions regarding our case study:

NoCyclePreserved:
all n: Node |

n in thisV.headV.(*nextV) => n !in n.nextV.(*nextV)

ElementsRemoved:
all n: Node |

n in (thisV.headV.(*nextV) - (currV.(*nextV))) =>
n.valueV !in (c1+c2+c3)

222 N.M. Aguirre et al.

The first of these, NoCyclePreserved, affirms that the list is acyclic, while
the second one, ElementsRemoved, in combination with the fact that curr is
null at the end of the algorithm, ensures that the characters in the set to be
removed, passed as a parameter, are indeed removed from the list.

Without the use of abstraction, if we unroll the only loop in the program 23
times the analysis of assertion NoCyclePreserved exhausts the available memory,
causing a run time crash of the Alloy Analyzer (the corresponding CNF formula
had 620841 variables, 30768 of which are primary, and a total of 1339236 clauses).
In this case, the scopes for signatures Char and Node were set to 24. Also, if we
unroll the loop 51 times, a runtime exception is thrown by the Alloy Analyzer due
to insufficient memory to construct the CNF formula to be analysed.

Using the traditional predicate abstraction mechanism described, without the
further optimisations, 44 seconds of SAT analysis time were required for our tool
to check the property NoCyclePreserved. Two new predicates were introduced
during the process. Thanks to the fact that our method can take advantage of
already calculated abstract actions, performing SAT Solving was only necessary
for the first four loop unrolls. For the same assertion, but after applying pro-
gram atomisation to the original specification, the SAT time was reduced by
almost 50%: 25 seconds. The number of predicates and loop unrolls required to
discover new abstract actions, though, remained the same. The above described
induction detection mechanism allows us to reduce the number of nodes in the
abstract execution tree to be visited. Notice that, given a certain number k of
loop unrolls, the size of the abstract execution tree for our program is exponen-
tial with respect to k. More precisely, in the worst case (when the whole tree
has to be visited) we need to visit 1+

∑n
i=1 2i +

∑n−1
i=1 2i nodes for the atomised

program and 1 +
∑n

i=1 2i + 2 ∗
∑n−1

i=1 2i nodes for the non atomised case. For
instance, if we unroll the loop in the program four times for the atomised case,
the abstract tree will be composed of 45 nodes. On the other hand, by employing
induction detection the procedure can be terminated after visiting 19 nodes, for
the assertion NoCyclePreserved. On the other hand, the abstract tree for the
nonatomised program, with the loop unrolled four times, will have 59 nodes, and
using induction detection our algorithm visited only 30 of them. Furthermore,
induction detection allows us to conclude that we can stop the search for ab-
stract counterexamples (of any size), since, as it was discussed in section 5.2, no
new states violating the property can appear. As it is shown by this example,
this technique can reduce the search state space considerably.

On the other hand, if we want to verify the property ElementsRemoved using
again the traditional abstraction mechanism, the abstraction process diverges
due to excessive introduction of abstraction predicates. Nevertheless, using pro-
gram atomisation on the model, and introducing the right auxiliary invariants
(prev.next equals curr, prev and curr are reachable from the head of the list,
and the list is acyclic) as abstraction predicates, the process converges again
very quickly (9 seconds of SAT time). New atomic actions appeared when ver-
ifying the property up to the third iteration, and 13 nodes of the (atomised)
abstract computation tree were visited by our algorithm. A total of 8 abstraction

Towards Abstraction for DynAlloy Specifications 223

predicates were necessary. It is worth mentioning that NoCyclesPreserved was
used as an abstract invariant (i.e., a predicate that is valid before and after ex-
ecution of each abstract action). We did so safely because NoCyclesPreserved
was previously verified to be a concrete invariant. Notice also that, since the pro-
gram that we are considering is the same as for the previous case, the number
of nodes of the execution tree can be calculated using the same formula (there
are 18 nodes in the graph for 3 loop unrolls).

Of course, obtaining the above mentioned auxiliary predicates automatically
would require the use of invariant generation techniques. We used the “global
invariants” generation mechanism of the STeP tool [2], but in order to do this
we had to produce an ad hoc representation of the program in STeP’s language
SPL. Clearly, this requires further investigation, and is part of our future work.

An important fact to mention regarding the experiments is that, since the Dy-
nAlloy specification originates from code, atomic actions essentially correspond
to assignments, and therefore these are “invertible”, making the calculation of
weakest preconditions in sequential programs (when examining abstract coun-
terexamples) very efficient. It is expected that this efficiency will not be preserved
when considering other kinds of DynAlloy specifications.

7 Related Work

There exist many tools and approaches applying ideas of predicate abstraction
for formal verification, such as for instance the work reported in [6,7]. While
our approach is strongly based on Das and Dill’s technique for predicate ab-
straction, it differs from existing tools in that ours is tailored to SAT-solving
through Alloy and DynAlloy, as opposed to most other tools, whose associated
verification technique is model checking. In [4] SAT-solving is used to construct
the abstraction, but the more conventional techniques based on symbolic model
checking are used in the remaining parts of the process. With respect to abstrac-
tion in the context of Alloy and DynAlloy specifications, the most closely related
approaches we know of are the work of Taghdiri [19] on the use of predicate ab-
straction in JAlloy analysis, and the work of some of the authors of this paper
on program atomisation [11]. The work of Taghdiri is different from ours since
her abstraction mechanism faithfully represents the code of a Java program,
except for the method calls, where abstraction is applied. The abstractions ob-
tained for procedure calls are somehow “reusable” (they can be used for other
places in the program where the procedure is also called), as in our approach;
however, her mechanism for discovering new predicates is completely different,
since in her case the spurious counterexamples are not really abstract runs, but
concrete ones where the abstraction is present only in the form of underspeci-
fied effects for procedure calls. SATURN [22] is, as our tool, completely based
on SAT-solving. The techniques it uses to improve analysability are: program
slicing (at the intra-procedural level) and a kind of abstraction called function
summaries to modularise the analysis at the inter-procedural level. SATURN
models programs faithfully (no abstraction is performed).

224 N.M. Aguirre et al.

8 Conclusions and Future Work

We have investigated the application of predicate abstraction for improving the
analysis of DynAlloy specifications. We have concentrated in a particular kind
of DynAlloy specifications, namely those resulting from a translation from anno-
tated Java code. We plan to exploit the experiences gained in providing abstrac-
tion for this kind of DynAlloy specifications in order to provide a mechanism
applicable to a wider class of these. We exploited the principal analysis tech-
nique associated with Alloy and DynAlloy specifications, SAT based analysis,
in order to build, analyse and improve the abstractions in an automated way,
based on Das & Dill’s algorithm for abstraction refinement [6], complemented
primarily with an automated program atomisation mechanism. We have also
provided a mechanism for detecting convergence in the unrolling process for a
certain schema of DynAlloy programs.

The results of the experiments conducted, based on a case study over a model
originated from a JML annotated Java program, show that the improvements
performed to the traditional predicate abstraction mechanism had an important
impact for one of the properties we checked. The reason is that these constituted
an economy in abstraction predicates to be introduced during verification, as well
as in the size of the formulae analysed when examining abstract counterexamples
for abstraction refinements. However, this is just an initial attempt, and it is clear
that we need to develop more case studies.

There are several directions for future work. We are planning to experiment
with the use of automated theorem provers to attempt to simplify the formulae
introduced in the process of improving abstractions, for eliminating unnecessary
quantifiers, amongst other things. Invariant generation techniques, integrated in
the approach, will have in our opinion an important positive impact, so this is
one of the directions we want to explore. We are also planning to incorporate
a differentiated treatment for mutant and non mutant objects in the DynAl-
loy specifications, in order to make the construction of the abstractions more
efficient.

It is also important to mention that our approach corresponds only to intra-
procedural analysis. We plan to study the combination of the presented approach
with Taghdiri’s abstraction for Alloy [19].

References

1. Ball, T., Cook, B., Das, S., Rajamani, S.: Refining Approximations in Software
Predicate Abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988. Springer, Heidelberg (2004)

2. Bjorner, N., Browne, A., Colon, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe,
T.: Verifying Temporal Properties of Reactive Systems: a STeP Tutorial. Formal
Methods in System Design 16 (2000)

3. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(5) (1994)

Towards Abstraction for DynAlloy Specifications 225

4. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate Abstraction of ANSI-
C Programs using SAT, Technical Report CMU-CS-03-186. Carnegie Mellon Uni-
versity (2003)

5. Cousot, P.: Abstract interpretation. ACM Computing Surveys 28(2) (1996)
6. Das, S., Dill, D.: Successive Approximation of Abstract Transition Relations. In:

Proceedings of the IEEE Symposium on Logic in Computer Science LICS 2001.
IEEE Computer Society Press, Los Alamitos (2001)

7. Das, S., Dill, D.: Counterexample Based Predicate Discovery in Predicate Abstrac-
tion. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517.
Springer, Heidelberg (2002)

8. Dennis, G., Chang, F., Jackson, D.: Modular Verification of Code with SAT. In:
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2006, Portland, Maine, USA, pp. 109–120 (2006)

9. Frias, M., López Pombo, C., Baum, G., Aguirre, N., Maibaum, T.: Reasoning
about static and dynamic properties in alloy: A purely relational approach. ACM
Transactions on Software Engineering and Methodology (TOSEM) 14(4) (2005)

10. Frias, M., Galeotti, J.P., López Pombo, C., Aguirre, N.: DynAlloy: upgrading alloy
with actions. In: Proceedings of the 27th International Conference on Software
Engineering ICSE 2005. ACM Press, New York (2005)

11. Frias, M., Galeotti, J.P., López Pombo, C., Aguirre, N.: Efficient Analysis of Dy-
nAlloy Specifications. In: ACM Transactions on Software Engineering and Method-
ology (TOSEM). ACM Press, New York

12. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

13. Galeotti, J.P., Frias, M.F.: DynAlloy as a Formal Method for the Analysis of Java
Programs. In: Proceedings of IFIP Working Conference on Software Engineering
Techniques (SET 2006), Warsaw. Springer, Heidelberg (2006)

14. Jackson, D., Vaziri, M.: Finding Bugs with a Constraint Solver. In: Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA), Portland,
OR, USA, August 21-24, pp. 14–25. ACM Press, New York (2000)

15. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (ACM TOSEM) 11(2) (2002)

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

17. Kim, S.-K., Carrington, D.: Formalizing the UML Class Diagram Using Object-Z.
In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723. Springer, Heidel-
berg (1999)

18. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodology (TOSEM) 15(1) (2006)

19. Taghdiri, M.: Inferring Specifications to Detect Errors in Code. In: Proceedings of
the 19th International Conference on Automated Software Engineering ASE 2004,
Austria (September 2004)

20. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: LTSA-MSC: Tool Support for
Behaviour Model Elaboration Using Implied Scenarios. In: Garavel, H., Hatcliff, J.
(eds.) TACAS 2003. LNCS, vol. 2619. Springer, Heidelberg (2003)

21. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-
Hall, Englewood Cliffs (1996)

22. Xie, Y., Aiken, A.: Saturn: A Scalable Framework for Error Detection Using
Boolean Satisfiability. ACM-Transactions on Programming Languages and Sys-
tems (TOPLAS) (to appear)

Partial Translation Verification for Untrusted

Code-Generators�

Matthew Staats and Mats P.E. Heimdahl

Dept. of Comp. Sci. and Eng.
University of Minnesota

{staats,heimdahl}@cs.umn.edu

Abstract. Within the context of model-based development, the cor-
rectness of code generators for modeling notations such as Simulink and
Stateflow is of obvious importance. If correctness of code generation can
be shown, the extensive and often costly verification and validation ac-
tivities conducted in the modeling domain could be effectively leveraged
in the code domain. Unfortunately, most code generators in use today
give no guarantees of correctness.

In this paper, we investigate a method of leveraging existing model
checking tools to verify the partial correctness of code generated by code
generators that offer no guarantees of correctness. We explore the feasi-
bility of this approach through a prototype tool that allows us to verify
that Linear Temporal Logic (LTL) safety properties are preserved by C
code generators for Simulink models. We find that the approach scales
well, allowing us to verify that 55 LTL properties are maintained when
generating 12,000+ lines of C code from a large Simulink model.

1 Introduction

Tools translating a source language to a target langauge are probably the most
used tools in software development. Of particular interest in this article are
code generators for modeling notations extensively used in the critical systems
domain, such as Simulink and Stateflow [16,17], and the SCADE tools-suite [8].
In this domain it would be highly desirable if the extensive and often costly
verification and validation activities conducted in the modeling domain could be
effectively leveraged in the code domain; in other words, if we have have high
confidence in the correctness of the model, it would be nice if we could have high
confidence in the generated code. Unfortunately, these code generators come with
no guarantees of correctness—they are either black-boxes of unknown (though
generally good) quality, or have been developed in in-house to address specific
needs in terms of generated-code footprint, performance, or applicability to a
specific hardware platform.

� This work has been partially supported by NASA Ames Research Center Cooperative
Agreement NNA06CB21A, NASA IV&V Facility Contract NNG-05CB16C, and the
L-3 Titan Group.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 226–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Partial Translation Verification for Untrusted Code-Generators 227

While interest in the correctness of translators such as traditional compilers
and code generators has existed nearly as long as translators themselves [14,18],
we still lack the ability to cost-effectively prove the correctness of industrial
translators. The automation of correctness proofs is still out of reach, while
manual proofs of correctness are both large and difficult (if not entirely infea-
sible). A different—and potentially more practical—approach to verification is
to check individual translations for correctness (as opposed to the translator it-
self) [22,24,25]. These tools generally rely on a proof of correctness being emitted
during the translation process (to be checked by a proof checker). Nevertheless,
while this approach is promising, is has not seen adoption in industry. There-
fore, for the foreseeable future, we will have to rely on code-generators where we
cannot fully trust the generated code.

In this paper, we investigate a method of leveraging existing model checking
tools to verify the partial correctness of generated code from a translator which
offers no guarantees of correctness (we term such a translator an untrusted trans-
lator). This method operates by checking individual translations (as above) but
does not require changes to the translator to do so. We investigate the feasibil-
ity of the approach through a prototype tool that verifies that Linear Temporal
Logic (LTL) properties [19,20] are preserved in the translation of a Simulink
model to C code.

The intuition behind the prototype is as follows: in collaboration with Rock-
well Collins Inc., we have demonstrated how to verify large numbers of model
requirements captured as Linear Temporal Logic (LTL) properties [19,20] over
Simulink models. If we could re-verify these properties on the auto-generated C
code, we would be able to provide a proof that at least the essential properties
captured in the modeling domain are preserved in the translation from Simulink
to C; the generated C code may not be fully correct with respect to the original
Simulink model, but it will be correct enough to preserve crucial safety-critical
required properties.

Our prototype tool is based on two exisiting model checkers: the NuSMV
model checker [23] for the verification of Simulink models, and the ANSI-C
Bounded Model Checker (CBMC) [3] for the verification of generated C code.
Our tool operates by automatically translating the LTL properties expressed in
the Simulink domain to monitors in the C domain, thus allowing us verify the
same set of LTL properties over both the model and the generated code.

Our primary interest in this investigation was to determine if this approach
would scale to address a production-sized Simulink model. Based on our expe-
riences reported in this paper, CBMC scaled remarkably well, allowing us to
easily re-verify a collection of 55 required properties on 12K+ lines of generated
C code. Based on these results, we believe this approach to partial verification
of auto-generated code holds great promise and we will explore the scalability
further on commercial systems in future work.

The remainder of the paper is organized as follows. Section 2 contains an
overview of the verification method and our proof of concept and walks through
a small example. Section 3 discusses the effectiveness of our approach three

228 M. Staats and M.P.E. Heimdahl

industrial examples. Section 4 compares our work with previous related work,
and Section 5 concludes the paper.

2 Verification of Individual Translations

As previously mentioned, verifying properties of correctness over individual
translations has been shown to be a practical method of gaining guarantees of
translator correctness. Current approaches to verifying individual translations
have been used successfully to verify that a variety of properties are preserved
during translation, ranging from type and memory safety of compiled C pro-
grams [22] to complete equivalence of SIGNAL programs translated to C [24].

These approaches are often applied to each transformation pass performed
by the translator, thus inductively proving that properties of interest are main-
tained during translation [25]. Most existing approaches rely on instrumenting
the translator to either verify that properties are maintained during translation
or provide a proof of such (which can then be verified by a proof checker). These
methods are therefore of little use when an untrusted translator must be used.

In the remainder of this section, we will outline how existing model checking
tools can be leveraged to provide guarantees of correctness for translations gen-
erated from untrusted translators, and describe a prototype we have developed
for verifying translations from Simulink to C.

2.1 Overview of Verification

As shown in Figure 1, the general method uses three principal tools: two model
checkers capable of verifying properties of interest on the input and output of
the translator, respectively, and the translator itself. Two inputs are required:
the translator input and a set of properties we wish to show are preserved by
translation.

The method is simple. The input is first processed by the translator to produce
an output. Then, the set of properties are verified on both the input and output
by the appropriate model checkers, producing two lists of verified properties.

Fig. 1. General Approach to Translation Verification

Partial Translation Verification for Untrusted Code-Generators 229

These lists are compared, and any properties which fail to verify on only the
input or output are reported, as they indicate that the translation either failed
to preserve a property, or—in the case when a property holds on the output
but not the input—removed one or more possible behaviors in the translation
process. Should no such discrepancies exist, the translation has been proven to
preserve the given set of properties.

Note that while we are primarily interested in this method for use in verify-
ing the generated code, the method is applicable for any translation in which
the same set of properties can be verified over both the input and output of a
translator.

2.2 Prototype Implementation

Our prototype concerns the verification of C code generators for Simulink. We
perform verification over sets of safety properties defined as Linear Temporal
Logic (LTL) [10]. Note that a safety property is one that states that “something
bad never happens”. This is in contrast to liveness properties, which state that
“something good eventually happens”. We focus our efforts on safety properties
for two reasons: first, it is considerably easier to verify safety properties, partic-
ularly when using bounded model checking [2]. Second, for our sample systems,
all properties are expressed as safety properties, and thus the ability to verify
safety properties is sufficient for our goal.

For our prototype, model checking is done by the NuSMV model checker [23]
and the ANSI-C Bounded Model Checker (CBCM) [3] for Simulink [16] and C,
respectively. NuSMV directly allows us to check LTL properties against finite
state systems. In previous work [19,20], we developed a Simulink to NuSMV
translator with Rockwell Collins Inc. This translator allows us to effectively
verify the LTL properties over Simulink models, thus making NuSMV an good
fit for our task.

CBMC, however, does not directly allow us to check LTL properties over C
code. CBMC is designed to statically check a variety of properties such as pointer
safety and safe use of arrays, as well as user-specified assertions. We therefore
must express LTL properties as assertions to verify them using CBMC. We do
this by translating each LTL property into a monitor (expressed as C code) that
indicates violations of the LTL property using assertions.

To demonstrate the construction of a monitor, consider the following require-
ment from a Flight Guidance System (FGS) (this sample system is outlined in
Section 3.1):

G((!Onside_FD_On & !Is_AP_Engaged) ->
X(Is_AP_Engaged -> Onside_FD_On))

This requirement states the following: “If the onside FD cues are off, the onside
FD cues shall be displayed when the AP is engaged.” (In this example, the FD
refers to the Flight Director – a part of the pilot’s primary flight display – and
the AP refers to the Auto Pilot.) Formally, the LTL formula states that it is
always the case (G) that if the Onside FD is not on and the AP is not engaged,

230 M. Staats and M.P.E. Heimdahl

Fig. 2. LTL Property Expressed as TGBA. Note that AP represents Is AP Engaged
and FD represents Onside FD On.

in the next instance in time (X) if the AP is engaged the Onside FD will also
be on.

To convert this LTL property to a C monitor based on assertions, we first
use the Spot [6] library to translate the LTL property to a Transition-based
Generalized Büchi Automata (TGBA), seen in Figure 2. A TGBA is simply a
Büchi automaton in which acceptance transitions are used rather than accep-
tance states; an input sequence is accepted if it causes an acceptance transition
to be visited infinitely often [12]. Note that for this LTL property, all transitions
are acceptance transitions (the reason for this is explained below).

Next, we replace the variable names taken from the LTL property with the
variable names present in the generated C code (this step is specific to the
naming conventions used in the translator). For this example, we use the naming
conventions present in the Real-Time Workshop C code generator, available for
Simulink [16]. For the example LTL property, this renaming is reflected in the
C monitor described next.

Finally, we insert the C monitor into the generated C code. Note that the C
code generated from our Simulink models is intended to run as a recurring task
polling the environment input data. The generated C code operates by repeatedly
performing three steps: poll the input, update the internal state, and produce
output. LTL properties are defined over a sequence of consistent states; we are
not interested in the system state in the middle of the next state computation,
we only care when the computation has been completed. In the context of the
generated C code, these consistent states occur after the output is produced and
before new input is received. We therefore insert monitors between the portions
of C code which produce output and receive new input.

We map the transitions defined by the TGBA to a sequence of if statements.
Each if statement corresponds to a single transition in the TGBA, and the
current state of the TGBA is stored as an integer. When a transition is taken,
the current state of the TGBA is updated accordingly. During execution of
the generated C code, a transition will be taken every “step” based upon the
current values of variables in the C code and the current state of the TGBA.

Partial Translation Verification for Untrusted Code-Generators 231

/*LTL Formula #0
(G (((! Onside_FD_On) & (! Is_AP_Engaged))

-> (X (Is_AP_Engaged -> Onside_FD_On)))) */
if ((ltlstate0 == 1) && ((!FGS_Y.Is_AP_Engaged && !FGS_Y.Onside_FD_On))) {

ltlstate0 = 3;
} else if ((ltlstate0 == 1) && ((!FGS_Y.Is_AP_Engaged

&& FGS_Y.Onside_FD_On) || (FGS_Y.Is_AP_Engaged))) {
ltlstate0 = 2;

} else if ((ltlstate0 == 2) && (!FGS_Y.Is_AP_Engaged && !FGS_Y.Onside_FD_On)) {
ltlstate0 = 3;

} else if ((ltlstate0 == 2) && ((!FGS_Y.Is_AP_Engaged
&& FGS_Y.Onside_FD_On) || (FGS_Y.Is_AP_Engaged))) {

ltlstate0 = 2;
} else if ((ltlstate0 == 3) && (!FGS_Y.Is_AP_Engaged && !FGS_Y.Onside_FD_On)) {

ltlstate0 = 3;
} else if ((ltlstate0 == 3) && (!FGS_Y.Is_AP_Engaged && FGS_Y.Onside_FD_On)) {

ltlstate0 = 2;
} else if ((ltlstate0 == 3) && (FGS_Y.Is_AP_Engaged && FGS_Y.Onside_FD_On)) {

ltlstate0 = 1;
} else { assert(0); }

Fig. 3. LTL Property Expressed as C Assertion

Fig. 4. Verifying LTL Properties on C Code

If no transition can be taken (indicating an input sequence not accepted by the
TGBA), an error is signaled by means of an assert(0) statement. The monitor
corresponding to our example property is seen in Figure 3.

Once monitors are created, they are inserted into the C code we wish to
verify. CBMC can then statically determine if there exists an execution path
which reaches the monitor’s assertion, thus checking if the LTL property holds
over the C code. An outline of this entire process as performed by our prototype
is shown in Figure 4.

Our prototype contains several details worth noting. As mentioned above, to
keep our monitor construction simple, we have elected to only verify safety prop-
erties. Formally, these are expressed as G(p), where p is some property which
does not use the finally (F) operator. (F is used to define liveness properties,
which we do not support.) For a TGBA corresponding to a safety property, all
transitions are accepting transitions, and, thus, any input sequence which causes
the TGBA to always correctly transition is accepted. This property is key to our
monitor’s correctness—if we attempted to capture liveness properties, we might
fail to reject an input sequence which always correctly transitions but does not
infinitely pass by an accepting transition. Note that it is possible to express
liveness properties as safety properties [1], thus allowing us to extend monitor

232 M. Staats and M.P.E. Heimdahl

construction to handle liveness properties, though this would require significantly
more development effort of our prototype tool. Additionally, expressing liveness
properties as safety properties requires the introduction of state recording func-
tionality to the system, likely increasing the size of the searchable state space
by a significant amount.

Second, our prototype contains several aspects which are unproven, but must
be assumed to work if a user of the prototype wishes to claim a partial proof of
correctness. Specifically, errorneous behavior in the variable mapping, monitor
creation, or model checkers could lead to either false postives (signaling a prop-
erty violation in correctly generated code) or false negatives (failing to signal
a property violation in incorrectly generated code). However, with the notable
exception of the model checkers, the prototype is likely much simpler than the
code generator. We therefore believe trusting these prototype components is
reasonable.

Finally, note that unlike NuSMV, CBMC is a bounded model checker [3].
Bounded model checkers do not provide a complete proof of correctness for a
property unless the search depth of the model checker exceeds the completeness
threshold [2]. In other words, for a property to be proven to hold on a system
with a bounded model checker, a sufficient number of states must have been
explored by the model checker. For safety properties that do not use temporal
operators besides the initial Globally (i.e., G(p) where p contains no temporal
operators), this threshold is the reachability diameter of the model [2]. Using the
symbolic model checker in NuSMV and the Simulink model, we can calculate
the reachability diameter and use the result to achieve complete verification
when using CBMC. Note that it is possible for an incorrect code generator
to increase the reachability diameter (though plausible occurrences of this are
difficult to formulate); to be conservative, we therefore used a search depth twice
the reachability diameter of the Simulink model when verifying properties on the
generated C code using CBMC.

For safety properties in which p contains the next operator (X), we use an
approach suggested in [2]. Using this approach, we extend the original model
with an automaton derived from p (using essentially the same approach used to
create C monitors) before calculating the reachability diameter, thus accounting
for the state tracking variables introduced by the creation of the C monitors
described above.

3 Application Results

We applied our prototype to three sample systems (two small toy-examples and
one close to production model of the model-logic of a transport class flight guid-
ance system) using two different code generators: Real-Time Workshop, a com-
mercial code generator from Mathworks [16], and a currently in-development
code generator courtesy of Rockwell Collins Inc. Our results showed our pro-
totype scaled remarkably well, managing to verify 55 LTL properties over the
translation of a Simulink model of significant size.

Partial Translation Verification for Untrusted Code-Generators 233

Initially, we verified single LTL properties over small (but realistic) sample
systems. These initial attempts were successful, showing the LTL properties held
over the translations in question, and ran very quickly. We then explored the
scalability and robustness of our prototype by successfully verifying the transla-
tion of a much larger model using a set of 55 LTL properties. These properties
used a number of different operators (e.g., the next operator, equivalence opera-
tor, implies operator, etc.) and were structured in a variety of ways. Additionally,
these properties were defined over a large portion of the input and output vari-
ables. We thus feel that these properties give a good indication of the correctness
of a translation from Simulink to C, the robustness of our prototype, and the
feasibility of the method in general. The models and results are described in
more detail below.

3.1 Sample Systems

The three sample systems are described below. Measurements relating the size of
the systems are given in Table 1. Generated C code lines of code (LOC) counts
were performed by SLOCCount [27].

Altitude Switch (ASW): The Altitude Switch (ASW) is a re-useable component
that turns power on to a Device Of Interest (DOI) when the aircraft descends
below a threshold altitude above ground level (AGL). If the altitude cannot be
determined for more than two seconds, the ASW indicates a fault. The detection
of a fault turns on an indicator lamp within the cockpit.

Wheel Brake System (WBS): The Wheel Brake System (WBS) is a Simulink
model derived from the WBS case example found in ARP 4761 [26,15]. The
WBS is installed on the two main landing gears. Braking on the main gear
wheels is used to provide safe retardation of the aircraft during the taxiing and
landing phases, and in the event of a rejected take-off. Braking on the ground
is either commanded manually, via brake pedals, or automatically (autobrake)
without the need for pedal application. The Autobrake function allows the pilot
to pre-arm the deceleration rate prior to takeoff or landing. When the wheels
have traction, the autobrake function will control break pressure to provide a
smooth and constant deceleration.

Flight Guidance System (FGS): A Flight Guidance System is a component of
the overall Flight Control System (FCS) in a commercial aircraft. It compares

Table 1. Measurements of Sample System Size. The columns labeled RTW and In-Dev
refer to the results from Real Time Workshop and the Rockwell Collins code generators
respectively.

Simulink Nodes System Diameter RTW C LOC In-Dev C LOC

ASW 14 3 220 134

WBS 157 2 774 197

FGS 4510 10 12,242 1,379

234 M. Staats and M.P.E. Heimdahl

Table 2. Time to Verify SMV and Generated C Code for our sample systems

Real-Time Workshop C In-Development C SMV

ASW 7 secs. 8 secs. 6 secs.

WBS 57 secs. 9 secs. 2 secs.

FGS 1002 secs. 273 secs. 66 secs.

the measured state of an aircraft (position, speed, and altitude) to the desired
state and generates pitch and roll-guidance commands to minimize the difference
between the measured and desired state. The FGS consists of the mode logic,
which determines which lateral and vertical modes of operation are active and
armed at any given time, and the flight control laws that accept information
about the aircraft’s current and desired state and compute the pitch and roll
guidance commands. In this study we have used the model of the mode logic.

3.2 Results

For the C code generations performed by both code generators, all LTL proper-
ties were verified for each case example. The time to verify properties over the
input and output aspects of translations is given in Table 2. All properties were
verified on a Intel Centrino Duo machine running at 1.83 GHz with 1 GB RAM.

We feel the FGS is the most interesting case example, being both the largest
model and the model with the largest number of associated LTL properties.
Translation of the FGS Simulink model yielded over 12,000 lines of source-code
with Real Time Workshop and over 1,300 lines of code with the Collins In-
Development generator (Table 1). Verification of the LTL properties over the
generated C code took approximately 17 and 5 minutes respectively (Table 2).
As a reference, verification of the properties over the NuSMV model extracted
from the Simulink model took approximately 1 minute. Given the the results for
a substantial system such as the FGS (in terms of code size as well as number of
properties to verify), we feel that our prototype demonstrates that the method
of partial correctness verification of auto-generated C-code using model-checking
techniques is both feasible and useful.

4 Related Work

The concept of a verifying translator originated in early work by Floyd [9]. This
was followed by a number of attempts centered on proving that a translator
would produce correct output for any input [7,13,21]. While these attempts met
with some success, manual proofs are difficult to perform and automatic proofs
of translator correctness remain generally out of reach.

More recently, several efforts have focused on proving properties for individual
translations correct, rather than proving the translator correct in general. Necula
and Lee have developed a compiler for a type-safe subset of C that verifies type
and memory safety of the resulting assembler using code annotations [22]. They

Partial Translation Verification for Untrusted Code-Generators 235

later extended this idea to the full Java language [4]. Rinard has put forth the
logical foundations for “credible compilation” of imperative languages in which
a proof is generated showing the equivalence of the compiler’s input and out-
put [25]. Pnueli et. al. describe a similar approach to Rinard’s and illustrate their
approach using a C code generator for the synchronous language SIGNAL [24].
Note that both Pnueli’s and Rinard’s approaches generate proofs of equivalence
between the input and output, while Necula and Lee’s approach only produces
a proof that the output satisfies certain properties which are known to exist in
the input (such as type safety).

These recent efforts share our goal of verifying properties of individual transla-
tion, but differ from the approach described in this report in that they are imple-
mented within the translator, and, thus, must be incorporated by the developers
of the translator. In contrast, the approach we have presented can be applied
to any translator, provided a method of statically verifying a set of properties
over both the translator input and output exists (in the case of our prototype,
this meant a model checker for both the input and output and knowledge of how
to create and insert monitors into the generated C code). Additionally, while
these approaches are clearly more feasible than proving a translator correct in
general, they do require significant effort on the part of the translator developer,
the approach we have presented requires no changes to the translator itself.

Denney and Fischer have developed a method of automatically annotating
generated code without modifying the translator [5]. This method achieves sim-
ilar goals in that individual code generations can be statically verified without
the need to instrument the code generator itself. However, method of static ver-
ification used differs - rather than directly verifying a set properties are true for
generated code, Denney and Fischer’s method instead opts to annotate the gen-
erated code such that the correctness of the annotations implies the correctness
of one or more safety properties. Once the code is annotated, a proof checker is
used to verify the annotations.

The construction of C monitors in our prototype is performed similarly in a
tool developed by Giannakopoulou et al. [11], though their work focuses on the
generation of monitors for run-time verification.

5 Conclusions

In this paper, we have explored a method by which useful properties can be veri-
fied to hold over individual translations performed by untrusted translators. We
have shown that though widespread adoption of translators supporting transla-
tion validation has not yet been realized, and provably correct translators still
remain difficult to build, the use of already existing model checkers provides a
feasible means of establishing guarantees of translation correctness beyond the
guarantees generally available.

In particular, we show the applicability of this method in the context of code
generators used in model-based development, and have developed a prototype
leveraging the NuSMV and CBMC model checkers. These model checkers, in

236 M. Staats and M.P.E. Heimdahl

conjunction with the infrastructure to translate LTL properties into C assertions,
are used to verify that a set of LTL properties are preserved when generating C
code from Simulink models. Notably, we applied our prototype to demonstrate
that two code generators generated C code for a large industrial Simulink model
correctly with respect to a set of 55 LTL properties. We believe this demon-
strates both scalability and effectiveness of this method and intend to explore
this method further in the near future.

We feel that this approach holds promise as a relatively easy to implement
technique that can be employed by software developers concerned with the cor-
rectness of a untrusted translator, specifically code generators. This approach
allows developers without access to the internals of a code generator (or without
the desire to implement translation validation methods into a code generator)
to achieve some guarantee of the correctness of an individual translation.

Acknowledgements

We would like to thank Dr. Michael Whalen from Rockwell Collins Inc. for
allowing us to use his in-development C code generator, as well as for insights
and discussions on the use of bounded model checkers.

References

1. Biere, A., Artho, C., Schuppan, V.: Liveness Checking as Safety Checking. Elec-
tronic Notes in Theoretical Computer Science 66(2), 160–177 (2002)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model
Checking. Advances in Computers 58, 118–149 (2003)

3. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988. Springer, Heidelberg
(2004)

4. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying
compiler for Java. ACM SIGPLAN Notices 35(5), 95–107 (2000)

5. Denney, E., Fischer, B.: Annotation inference for the safety certification of auto-
matically generated code. In: Proceedings of the 21st IEEE International Confer-
ence on Automated Software Engineering (ASE 2006), pp. 265–268 (2006)

6. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Bu/spl uml/chi automata. In: Proceedings of the IEEE
Computer Society’s 12th Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, 2004 (MASCOTS
2004), pp. 76–83 (2004)

7. Dybjer, P.: Using Domain Algebras to Prove the Correctness of a Compiler.
Springer, Heidelberg

8. Esterel-Technologies. SCADE Suite product description (2004),
http://www.esterel-technologies.com/v2/

scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html

9. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer
Science 19(19-32), 1 (1967)

http://www.esterel-technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html
http://www.esterel-technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html

Partial Translation Verification for Untrusted Code-Generators 237

10. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pp. 3–18. Chapman & Hall, Ltd., Boca Raton (1996)

11. Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: Proceedings of International Conference on
Automated Software Engineering (ASE 2001), pp. 412–416 (2001)

12. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Buchi automata. In: Proceedings of the 22nd IFIP WG, pp. 6
(2002)

13. Guttman, J.D., Ramsdell, J.D., Wand, M.: VLISP: A verified implementation of
Scheme. Higher-Order and Symbolic Computation 8(1), 5–32 (1995)

14. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research.
In: Böszörményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789. Springer,
Heidelberg (2003)

15. Joshi, A., Heimdahl, M.P.E.: Model-Based Safety Analysis of Simulink Models Us-
ing SCADE Design Verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFE-
COMP 2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

16. Mathworks Inc. Simulink product web site,
http://www.mathworks.com/products/simulink

17. Mathworks Inc. Stateflow product web site,
http://www.mathworks.com

18. McCarthy, J.: Towards a mathematical science of computation. Information Pro-
cessing 62, 21–28 (1962)

19. Miller, S.P., Anderson, E.A., Wagner, L.G., Whalen, M.W., Heimdahl, M.P.E.: For-
mal Verification of Flight Critical Software. In: Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit (August 2005)

20. Miller, S.P., Tribble, A.C., Whalen, M.W., Heimdahl, M.P.E.: Proving the shalls:
Early validation of requirements through formal methods. Int. J. Softw. Tools
Technol. Transf. 8(4), 303–319 (2006)

21. Moore, J.S.: A mechanically verified language implementation. Journal of Auto-
mated Reasoning 5(4), 461–492 (1989)

22. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler.
ACM SIGPLAN Notices 33(5), 333–344 (1998)

23. The NuSMV Toolset (2005), http://nusmv.irst.itc.it/
24. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Tools and Algo-

rithms for Construction and Analysis of Systems, 4th International Conference,
TACAS, vol. 98, pp. 151–166

25. Rinard, M.: Credible compilation. In: Proceedings of the FLoC Workshop Run-
Time Result Verification (July 1999)

26. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment. SAE International (December 1996)

27. Wheeler, D.: SLOCCount: Source Lines of Code Count. Webpage. Version, 2 (2004)

http://www.mathworks.com/products/simulink
http://www.mathworks.com
http://nusmv.irst.itc.it/

A Practical Approach to Partiality –

A Proof Based Approach�

Farhad Mehta

Systransis AG − Transport Information Systems,
Bahnhofplatz, P.O. Box 4714,

CH-6304 Zug, Switzerland

Abstract. Partial functions are frequently used when specifying and
reasoning about computer programs. Using partial functions entails rea-
soning about potentially ill-defined expressions. In this paper we show
how to formally reason about partial functions without abandoning the
well understood domain of classical two-valued predicate calculus. In
order to achieve this, we extend standard predicate calculus with the no-
tion of well-definedness which is currently used to filter out potentially
ill-defined statements from proofs. The main contribution of this paper is
to show how the standard predicate calculus can be extended with a new
set of derived proof rules that can be used to preserve well-definedness in
order to make proofs involving partial functions less tedious to perform.

1 Introduction

Partial functions are frequently used when specifying and reasoning about
computer programs. Some basic mathematical operations (such as division) are
partial, some basic programming operations (such as array look-ups or pointer
dereferencing) are partial, and many functions that arise through recursive def-
initions are partial or possibly non-terminating . Using partial functions entails
reasoning about potentially ill-defined expressions (such as 3/0) in proofs which
(as discussed later in �3 and �4) can be tedious and problematic to work with.
Providing proper logical and tool support for reasoning in the presence of partial
functions is therefore important in the engineering setting. Although the contri-
butions of this paper are theoretical in nature, they result in practical benefits
which will be stated later in this section.

The current approaches for explicitly reasoning in the partial setting [6,7,19]
are based on three-valued logic where the valuation of a predicate is either true,
false, or undefined (for predicates containing ill-defined expressions). They also
propose their own ‘special-purpose’ proof calculi for performing such proofs. Us-
ing such a special-purpose proof calculus has the drawback that it differs from
the standard predicate calculus. For instance, it may disallow the use of the
� This research was carried out at the ETH Zurich as part of the EU research

project IST 511599 RODIN (Rigorous Open Development Environment for Complex
Systems).

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 238–257, 2008.
� Springer-Verlag Berlin Heidelberg 2008

A Practical Approach to Partiality – A Proof Based Approach 239

law of excluded middle (to avoid proving ‘3/0 = x ∨ 3/0 �= x’). Such differ-
ences make any special-purpose calculus unintuitive to use for someone well
versed in standard predicate calculus since, for instance, it is hard to mentally
anticipate the consequences of disallowing the law of excluded middle on the va-
lidity of a logical statement. Automation too requires additional effort since the
well-developed automated theorem proving support already present for standard
predicate calculus [22] cannot be readily reused. Additionally, as stated in [8],
there is currently no consensus on which is the ‘right’ calculus to use.

In this paper we present a general methodology for using standard predicate
calculus to reason in the ‘partial’ setting by extending it with new syntax and
derived rules. We then derive one such special-purpose calculus using this general
methodology. We call our approach ‘proof based’ since (in the spirit of [4] that we
build on) we do not make any detours through three-valued semantic arguments
(which can be found in [8] and [7]), but confine our reasoning to (syntactic)
proofs in standard predicate calculus. The novelty of this approach is that we
are able to reduce all our reasoning (i.e. within our system, as well as about
it) to standard predicate calculus, which is both widely understood and has
well-developed automated tool support. This approach additionally gives us a
theoretical basis for comparing the different special-purpose proof calculi already
present(which is done in �8.1), and the practical benefit of being able to exchange
proofs and theorems between different theorem proving systems.

The ideas presented in this paper have additionally resulted in providing bet-
ter tool support for theorem proving in the partial setting within the RODIN
development environment [1] for Event-B [3].

Setting. Our practical setting is that of formal system development in Event-
B [3]. The development process consists of modeling a desired system and proving
proof obligations arising from it. The logic used in Event-B is set theory built
on first-order predicate calculus. A user can define partial functions in this logic.
The results presented here are independent of the Event-B method and its set
theory. They are equally applicable in many areas where predicate calculus is
used to reason in a setting with potentially ill-defined expressions.

Structure. In �2 we define the syntax (�2.1) and proof rules (�2.2) for standard
first-order classical predicate calculus with equality (FoPCe). In �2.3 we state the
forms of reasoning we use in this paper and in �3 we show how partial functions
are defined. In �4 we show how to separate the concerns of well-definedness
from those of validity by filtering out ill-defined proof obligations using the well-
definedness (WD) operator ‘D’ as in [4,7,8]. In �5 we describe D and state some
of its important properties. The main contribution of this paper is in �6 where
we show how the notion of well-definedness can be integrated into standard
predicate calculus. In �6.1 we extend the definition of D to sequents. We then
formally define the notions of a well-defined sequent (�6.2) and a well-definedness
(WD) preserving proof rule (�6.3). In �6.4 we derive a proof calculus (FoPCeD)
that preserves well-definedness. In �7 we return to the practical issue of filtering
and proving proof obligations. In �8 we compare our approach with related work

240 F. Mehta

and show how our approach can be used as a basis to compare the special-
purpose proof calculi presented in [6] and [7]. We conclude in �9 by stating what
we have achieved and its impact on the RODIN development environment [1]
for Event-B.

2 Predicate Calculus

In this section we define the syntax and proof rules for the standard (first-order,
classical) predicate calculus with equality that we will use in the rest of the
paper.

2.1 Basic Syntax

Basic formulæ Formulæ in first-order predicate calculus can either be predicates
(P) or expressions (E). We define the structure of basic formulæ as follows:

P := ⊥ | ¬P | P ∧ P | ∀x.P | E = E | R(�E)
E := x | f(�E)

Where ⊥ is the ‘false’ predicate, x is a variable, �E is a finite, ordered sequence
of expressions, R is a relational predicate symbol, and f is a function symbol.
Equality is denoted by the infix binary relational predicate symbol ‘=’.

Sequents. A sequent is a statement we want to prove, denoted ‘H) G’, where H is
a finite set of predicates (the hypotheses), and G is a single predicate (the goal).

We extend this basic syntax in �2.2, �5, and �6 using syntactic definitions such
as ‘* =̂ ¬⊥’. The ‘=̂’ symbol represents syntactic equivalence. It is not itself
part of the syntax, but a meta-logical connective.

2.2 Proof Rules for FoPCe

Here are the rule schemas that define the basic proof calculus for first-order
predicate calculus with equality (basicFoPCe):

H, P) P
hyp

H) Q

H, P) Q
mon

H) P H, P) Q

H) Q
cut

H,¬P) ⊥
H) P

contr

H,⊥) P
⊥hyp

H, P) ⊥
H) ¬P

¬goal H) P
H,¬P) Q

¬hyp

H) P H) Q

H) P ∧ Q
∧goal

H, P, Q) R

H, P ∧ Q) R
∧hyp

H) P
H) ∀x·P ∀goal (x nfin H)

H, [x := E]P) Q

H, ∀x·P) Q
∀hyp

H) E = E
= goal

H) [x := E]P
H, E = F) [x := F]P

= hyp

A Practical Approach to Partiality – A Proof Based Approach 241

Syntactic operators. The rules shown above contain occurrences of so-called
syntactic operators for substitution and non-freeness. The predicate ‘[x := E]P ’
denotes the syntactic operator for substitution [x := E], applied to the predi-
cate P . The resulting predicate is P , with all free occurrences of the variable x
replaced by the expression E. The side condition ‘(x nfin H)’ asserts that the
variable ‘x’ is not free in any of the predicates contained in ‘H’. Both these
syntactic operators are defined (using ‘=̂’) on the inductive structure of basic
formulæ in such a way that they can always be evaluated away. Their formal
definitions can be found in [2]. Syntactic operators can be thought of as ‘macros’
whose repeated replacement always results in a basic formula. Our basic syn-
tax for formulæ therefore does not need to be extended to take the syntactic
operators into account.

Derived Logical Operators. The other standard logical operators *, ∨, ⇒, ⇔
and ∃ can be expressed in terms of the above basic logical connectives using
syntactic definitions such as ‘* =̂ ¬⊥’. Their corresponding proof rules can then
be derived from the above basic proof rules. Both these steps are standard and
their details can be found in �3.3 of [17].The resulting syntax and proof rules
correspond to the standard first-order predicate calculus with equality. We will
refer to this collection of proof rules as the theory (or proof calculus) FoPCe.

2.3 Reasoning

There are two forms of reasoning that we use in this paper. The first is syntactic
rewriting using syntactic definitions such as ‘* =̂ ¬⊥’, where all occurrences
of ‘*’ in a formula may be replaced with ‘¬⊥’, purely on the syntactic level,
to get a syntactically equivalent formula. The second is logical validity where
we additionally appeal to the notion of proof. All proofs done in this paper use
the standard predicate calculus FoPCe. When we say that a predicate ‘P ’ is
provable, we mean that we have a proof of the sequent ‘) P ’ using FoPCe .
Most proofs done in this paper rely on both syntactic and logical reasoning. In
�5.2 we discuss precautions we need to take when performing such proofs.

3 Defining Partial Functions

In this section we show how a partial function is defined in our mathematical
logic. We first present how this can be done in general, and then follow with an
example that will be used in the rest of this paper.

3.1 Conditional Definitions

A partial function symbol ‘f ’ is defined using the following conditional definition:

Cf
�x) y = f(�x) ⇔ Df

�x,y

fdef

Conditional definitions of the above form can safely be added to FoPCe as an
axiom, provided:

242 F. Mehta

1. The variable ‘y’ is not free in the predicate ‘Cf
�x ’.

2. The predicate ‘Df
�x,y’ only contains the free variables from ‘�x’ and ‘y’.

3. The predicates ‘Cf
�x ’ and ‘Df

�x,y’ only contain previously defined symbols.
4. The theorems:

Uniqueness: Cf
�x) ∀y, z · Df

�x,y ∧ Df
�x,z ⇒ y = z

Existence: Cf
�x) ∃y · Df

�x,y
must both be provable using FoPCe and the previously introduced
definitions.

The predicate ‘Cf
�x ’ is the well-definedness condition for ‘f ’ and specifies its

domain. For a total function symbol, ‘Cf
�x ’ is ‘*’. Provided ‘Cf

�x ’ holds, fdef can
be used to eliminate all occurrences of ‘f ’ in a formula in favor of its definition
‘Df

�x,y’. More details on conditional definitions can be found in [4].

3.2 Recursive Definitions

Note that conditional definitions as described above cannot be directly used
to define function symbols recursively since the definition of a function symbol
‘Df

�x,y’ may not itself contain the function symbol ‘f ’ that it defines, as stated in
the third condition above.

It is still possible to define partial functions recursively in a theory (such as the
set theory described in [4] and [3]) which supports the applications of functions
that are expressions (i.e. not plain function symbols) in the theory. Such recur-
sively defined functions are then defined as constant symbols (i.e. total function
symbols with no parameters). Function application is done using an additional
function symbol for function application (often denoted using the standard func-
tion application syntax ‘·(·)’) with two parameters which are both expressions:
the function to apply, and the expression to apply it to. The definition of this
function application symbol is conditional. Its well definedness predicate ensures
that the its first parameter is indeed a function, and its second parameter is
an expression that belongs to the domain of this function. This methodology
is described in detail in [4] which also describes (in �1.5) how functions can be
defined recursively.

3.3 A Running Example

For our running example, let us assume that our syntax contains the nullary
function symbol ‘0’, and the unary function symbol ‘succ’, and our theory con-
tains the rules for Peano arithmetic. We may now introduce a new unary function
symbol ‘pred ’ in terms of ‘succ’ using the following conditional definition:

E �= 0) y = pred(E) ⇔ succ(y) = E
preddef

Defined in this way, ‘pred ’ is partial since its definition can only be unfolded
when we know that its argument is not equal to 0. The expression ‘pred(0)’ is
still a syntactically valid expression, but is under-specified since we have no way

A Practical Approach to Partiality – A Proof Based Approach 243

of unfolding its definition. The expression ‘pred(0)’ is therefore said to be ill-
defined. We do not have any way to prove or refute the predicate ‘pred(0) = x’.

The predicates ‘pred(0) = pred(0)’ and ‘pred(0) = x ∨ pred(0) �= x’ though,
can still be proved to be valid in FoPCe on the basis of their logical structure.
This puts us in a difficult position since these predicates contain ill-defined ex-
pressions. The standard proof calculus FoPCe is therefore not suitable if we want
to restrict our notion of validity only to sequents that do not contain ill-defined
formulæ.

4 Separating WD and Validity

Since our aim is to still be able to use FoPCe in our proofs, we are not free
to change our notion of validity. We instead take the pragmatic approach of
separating the concern of validity from that of well-definedness and require that
both properties hold if we want to avoid proving potentially ill-defined proof
obligations. In this case, we still allow the predicate ‘pred(0) = pred(0)’ to be
proved to be valid, but we additionally ensure that it cannot be proved to be
well-defined. When proving a proof obligation ‘H) G’ we are then obliged to
prove two proof obligations:

WD :) D(H) G) Validity : H) G

The first proof obligation, WD, is the well-definedness proof obligation for the
sequent ‘H) G’. It is expressed using the well-definedness (WD) operator D that
is introduced in �5 and defined for sequents in �6.1. The second proof obligation,
Validity, is its validity proof obligation. An important point to note here is that
both these proof obligations may be proved using FoPCe .

Proving WD can be seen as filtering out proof obligations containing ill-defined
expressions. For instance, for ‘) pred(0) = pred(0)’ we are additionally required
to prove ‘) 0 �= 0 ∧ 0 �= 0’ as its WD (this proof obligation is computed using
definitions that appear in �5 and �6.1). Since this is not provable, we have filtered
out (and therefore rejected) ‘) pred(0) = pred(0)’ as not being well-defined in
the same way as we would have filtered out and rejected ‘) 0 = ∅’ as not
being well-typed. Well-definedness though, is undecidable and therefore needs
to be proved. Figure 1 illustrates how well-definedness can be thought of as an
additional proof-based filter for mathematical texts.

When proving Validity, we may then additionally assume that the initial se-
quent ‘H) G’ is well-defined. The assumption that a sequent is well-defined can

Mathematical
text to prove

Lexical
analysis

Syntactic
analysis

Type
checking

Well
definedness

Validity

Static filters Proof-based filter

Fig. 1. Well-definedness as an additional filter

244 F. Mehta

be used to greatly ease its proof. It allows us to avoid proving that a formula is
well-defined every time we want to use it (by expanding its definition, or apply-
ing its derived rules) in our proof. For instance we may apply the simplification
rule ‘x �= 0) pred(x + y) = pred(x) + y’ without proving its premise ‘x �= 0’.
This corresponds to the way a mathematician works.

In �6.4 we show this key result formally; i.e. how conditional definitions become
‘unconditional’ for well-defined sequents.

For the moment though, we may only assume that the initial sequent of Va-
lidity is well-defined. In order to take advantage of this property throughout
a proof we need to use proof rules that preserve well-definedness. Preserving
well-definedness in an interactive proof also has the advantage of preventing the
user from introducing possibly erroneous ill-defined terms into a proof. A proof
calculus preserving well-definedness is presented in �6. Before that, in the next
section, we first describe the well-definedness operator.

5 The Well-Definedness Operator

The WD operator ‘D’ formally encodes what we mean by well-definedness. D
is a syntactic operator (similar in status to the substitution operator ‘[x := E]’
seen in �2.2) that maps formulæ to their well-definedness (WD) predicates. We
interpret the predicate denoted by D(F) as being valid iff F is well-defined. The
D operator is attributed to Kleene [16] and also appears in [4,7,8], and as the
‘δ’ operator in [6,11].

Since D has been previously well studied, we only give in this section an
overview of the properties of D from [4] that we use later in this paper. In �5.1
we define D for formulæ in basicFoPCe . In �5.2 we derive equivalences that allow
D for all formulæ in FoPCe to be computed, and state an important properties
of D that we use later in �6.

5.1 Defining D
D is defined on the structure of formulæ in basicFoPCe using syntactic defini-
tions. For expressions, D is defined as follows:

D(x) =̂ * (1)

D(f(�E)) =̂ �D(�E) ∧ Cf
�E

(2)

where �D is D extended for sequences of formulæ (i.e. �D() =̂ *, �D(F, �F) =̂
D(F) ∧ �D(�F)). An occurrence of a variable in a formula is always well-defined.
The occurrence of a function application is well-defined iff all its operands are
well-defined (i.e. �D(�E) holds), and the well-definedness condition ‘Cf

�E
’ from the

conditional definition of f holds. The resulting definition for the running example
‘pred’ is D(pred(E)) =̂ D(E) ∧ E �= 0.

Similarly, D for ⊥, ¬, = and relational predicate application is defined as
follows:

A Practical Approach to Partiality – A Proof Based Approach 245

D(⊥) =̂ * (3)
D(¬P) =̂ D(P) (4)

D(E1 = E2) =̂ D(E1) ∧ D(E2) (5)

D(R(�E)) =̂ �D(�E) (6)

Note that we regard relational predicate application as always being total. In
case we require partial relational predicate symbols, they can be supported in
the same way as partial function symbols.

Since we would like predicates such as ‘x �= 0 ∧ pred(x) = x’ (or similarly,
‘x �= 0⇒pred(x) �= x’) to be well-defined special care is taken while defining the
well-definedness of ∧ and ∀ as follows:

D(P ∧ Q) =̂ (D(P) ∧ D(Q)) ∨ (D(P) ∧ ¬P) ∨ (D(Q) ∧ ¬Q) (7)
D(∀x·P) =̂ (∀x·D(P)) ∨ (∃x·D(P) ∧ ¬P) (8)

Intuitively, the above definitions enumerate all the possible conditions where a
conjunctive or universally quantified predicate could be well-defined. From these
definitions we can see that D is itself total and can always be eliminated from
any formula.

A formal derivation of the above definitions can be found in [4] and a semantic
treatment of D can be found in [8], [7], and [10], but for the purpose of this paper
it is sufficient to accept the above syntactic equivalences as the definition of D.

5.2 Proving Properties about D
In this section (and in �6.4) we show some important logical (as opposed to syn-
tactic) properties about D. Care must be taken when proving statements that
contain both syntactic and logical operators. Since D is not a logical operator,
but a syntactic one, modifying its argument using standard logical transfor-
mations is not valid. For instance, given that ‘P ⇔ Q’ holds (i.e. is valid in
FoPCe), it is wrong to conclude that ‘D(P) ⇔D(Q)’ (consider the valid predi-
cate ‘*⇔ pred(0) = pred(0)’). The only modifications that can be made to the
arguments of D are purely syntactic ones, such as applying syntactic rewrites
(using syntactic definitions that use ‘=̂’). In this section we state some properties
of D.

D of WD predicates. An important property of D is that for any formula F ,

D(D(F)) ⇔ * (9)

This means that all WD predicates are themselves well-defined . This property
can be proved by induction on the structure of basic formulæ. A proof of this
nature can be found in the appendix of [4]. Note that the above property is
expressed in terms of logical equivalence ‘⇔’ and not syntactic definition ‘=̂’.

246 F. Mehta

D for Derived Logical Operators. The following equivalences can be used to
compute the WD predicates of the derived logical operators *, ∨, ⇒, ⇔ and ∃:

D(*) ⇔ * (10)
D(P ∨ Q) ⇔ (D(P) ∧ D(Q)) ∨ (D(P) ∧ P) ∨ (D(Q) ∧ Q) (11)
D(P ⇒ Q) ⇔ (D(P) ∧ D(Q)) ∨ (D(P) ∧ ¬P) ∨ (D(Q) ∧ Q) (12)
D(P ⇔ Q) ⇔ D(P) ∧ D(Q) (13)
D(∃x·P) ⇔ (∀x·D(P)) ∨ (∃x·D(P) ∧ P) (14)

The statements above can be proved using FoPCe (considering the discussion in
�2.3 and the precautions stated in the beginning of this section) after unfolding
the definitions of the derived logical operators and D.

6 Well-Definedness and Proof

This section contains the main contribution of this paper. The theme of �5 was
the well-definedness of individual formulæ. In this section we show how the
notion of well-definedness can be integrated into proofs (i.e. sequents and proof
rules). In �6.1 we define D for sequents. We then formally define the notions of a
well-defined sequent (�6.2) and a WD preserving proof rule (�6.3) as motivated
in �4. In �6.4 we derive the proof calculus FoPCeD , the WD preserving version
of FoPCe, that we use to preserve well-definedness in a proof. We summarise
the results of this section in �6.5.

6.1 Defining D for Sequents

We now extend our definition of D to sequents. Observing that the sequent
‘ H) G ’ is valid iff ‘) ∀�x.

∧
H ⇒ G ’ is also valid (where ‘∀�x’ denotes the

universal quantification of all free variables occurring in H and G, and ‘
∧

H’
denotes the conjunction of all predicates present in H), we extend our well-
definedness operator to sequents as follows:

D(H) G) =̂ D(∀�x.
∧

H ⇒ G) (15)

Note that if we blindly use the definitions (15), (8), (12), and (7) to evaluate
‘D(H) G)’ we get a disjunctive predicate that grows exponentially with respect
to the number of free variables and hypotheses in the sequent. We present ways
to overcome this problem in �6.2 and �7.

6.2 Well-Defined Sequents

In �4 we said that the initial sequent of the Validity proof obligation could be
considered well-defined since we also prove WD. More generally, we say that a
sequent ‘H) G’ is well-defined if we can additionally assume ‘D(H) G)’ to be
present in its hypotheses. We thereby encode the well-definedness of a sequent
within its hypotheses. We introduce additional syntactic sugar ‘)D ’ to denote
such a well-defined sequent:

A Practical Approach to Partiality – A Proof Based Approach 247

H)DG =̂ D(H) G), H) G (16)

Re-stating WD and Validity. We may re-state our original proof obligations
from �4 in terms of ‘)D ’ as follows:

WDD :)D D(H) G) ValidityD : H)DG

Justification. The WDD proof obligation is equivalent to the original WD proof
obligation since we know from (9) that ‘D(D(H) G))⇔*’. To get ValidityD , we
add the extra hypothesis ‘D(H) G)’ to Validity using the cut rule whose first
antecedent can be discharged using the proof of WD.

We return to the issue of proving WDD and ValidityD in �7. The rest of this
section is concerned with proving well-defined ‘)D ’ sequents in general.

Simplifying �D . Directly unfolding (16) introduces the predicate ‘D(H) G)’
that, as we have seen in �6.1, grows exponentially when further unfolded. We
avoid unfolding ‘D(H) G)’ by using the following derived rule instead of (16)
to introduce or eliminate)D from a proof :

D̂(H),D(G), H) G

H)DG
)Deqv

The D̂ operator isD extended for finite sets of formulæ (i.e. D̂(F) =̂
⋃

F∈F{D(F)}).
Note that D̂(H) denotes a set of predicates. The double inference line means that
this rule can be used in both directions. The rule)Deqv says that when proving the
validity of a well defined sequent, we may assume that all its hypotheses and its
goal are individually well-defined.

Proof of)Deqv. We will use the following three derived rules as lemmas in order
to prove)Deqv :

D(P)) P

D(∀x·P)) ∀x·P
∀D

D(P),D(Q), P) Q

D(P ⇒ Q)) P ⇒ Q
⇒D

H,D(P),D(Q), P, Q) R

H,D(P ∧ Q), P ∧ Q) R
∧D

The proofs of ⇒D and ∧D in both directions are straightforward using the defi-
nitions of D and the rules of FoPCe, and are similar to the proof of)Deqv simple

shown later in this section. The proof of ∀D though is tricky, but almost identical
to the proof of another derived rule ∀goalD presented in �6.4.

The proof of)Deqv proceeds as follows. The logical content of the sequent (i.e.
the hypotheses and the goal) is first packed into the goal of the sequent using the
rules of FoPCe. This goal is then unraveled in parallel with its well-definedness
predicate using the three derived rules stated above. Here is the proof:

248 F. Mehta

D̂(H),D(G), H) G

H)DG
)Deqv

D̂(H),D(G), H) G

D(
∧

H),D(G),
∧

H) G
∧|H|

D

D(
∧

H ⇒ G))
∧

H ⇒ G
⇒D

D(∀�x·
∧

H ⇒ G)) ∀�x·
∧

H ⇒ G
∀|�x|D

D(H) G)) ∀�x·
∧

H ⇒ G
(15)

D(H) G), H) G
FoPCe

H)DG
(16)

In order to save space and the reader’s patience, only the important steps of
proofs are shown in this paper. Each step is justified using standard proof rules
or previously appearing definitions and equivalences. In the proof above, super-
scripts above the rules ∀D and ∧D indicate the number of applications of these
rules. For instance ∀|�x|D indicates |�x| (which is the number of free variables in the
original sequent) applications of the rule ∀D . Note that this is allowed since the
number of free variables (|�x|) and hypotheses (|H|) contained in a sequent are
finite.

In what follows we try to give the reader intuition on why)Deqv is valid since
this cannot be easily seen from the proof just presented. The fact that)Deqv
holds in the downward direction (i.e. if the hypotheses and goal of a sequent are
well-defined, then the sequent as a whole is well-defined) is easy to see since
hypotheses are weakened. For the upward direction, we present the proof of the
simpler case where the well-defined sequent has no free variables and only one
hypothesis. The derived rule corresponding to this simple case appears boxed on
the right, followed by its proof:

D(H),D(G), H) G

H)DG
)Deqv simple

D(H),D(G), H) G D(H),¬H, H) G
¬hyp; hyp D(G), G, H) G

hyp

(D(H) ∧D(G)) ∨ (D(H) ∧ ¬H) ∨ (D(G) ∧ G), H) G
FoPCe

D(H ⇒ G), H) G
(12)

H)DG
(16); (15)

From the proof above we can see that, apart from the case where the hypothesis
and the goal are individually well-defined, all other possible cases in which the
sequent could be well-defined (i.e. the remaining disjuncts of ‘D(H ⇒ G)’) can
be discharged using the rules in FoPCe.

A Practical Approach to Partiality – A Proof Based Approach 249

6.3 WD Preserving Proof Rules

We say that a proof rule preserves well-definedness iff its consequent and an-
tecedents only contain well-defined sequents (i.e.)D sequents). Examples of WD
preserving proof rules can be found in �6.4.

We may derive such rules by first using)Deqv to rewrite)D sequents in terms
of ‘)’ and then use FoPCe and the properties of D to complete the proof. Such
proofs are discussed in detail in �6.4.

6.4 Deriving FoPCeD

We now have enough formal machinery in place to derive the WD preserving
proof calculus FoPCeD . For each proof rule ‘r’ in FoPCe we derive its WD
preserving version ‘rD ’ that only contains sequents using ‘)D ’ instead of ‘)’.
Here are the resulting proof rules for basicFoPCeD that are (apart from the)D
turnstile) identical to their counterparts in basicFoPCe :

H, P)DP
hypD

H)DQ

H, P)DQ
monD

H,¬P)D⊥
H)DP

contrD

H,⊥)DP
⊥hypD

H, P)D⊥
H)D¬P

¬goalD
H)DP

H,¬P)DQ
¬hypD

H)DP H)DQ

H)DP ∧ Q
∧goalD

H, P, Q)DR

H, P ∧ Q)DR
∧hypD

H)DP

H)D∀x·P ∀goalD (x nfin H)

H)DE = E
= goalD

H)D [x := E]P
H, E = F)D [x := F]P

= hypD

The remaining rules, cut and ∀hyp, need to be reformulated by adding new
antecedents (that appear boxed below) to make them WD preserving:

H)DD(P) H)DP H, P)DQ

H)DQ
cutD

H)DD(E) H, [x := E]P)DQ

H, ∀x·P)DQ
∀hypD

These new antecedents are WD sub-goals that need to be discharged when these
rules are used in a proof.

The original rules (cut and ∀hyp) are not WD preserving since they introduce
new predicates and expressions that may be ill-defined into a proof. Note that
the converse is not true. A valid proof rule in FoPCe that does not introduce
any new formulæ into a proof can be non WD preserving. The following derived
proof rule illustrates this:

250 F. Mehta

H) P H, P) Q

H) P ∧ Q

Although this rule is valid (it can be proved using ∧goal and cut) and does
not introduce any new formulæ, it does not preserve well-definedness. The first
antecedent would be ill-defined in the case where P (say ‘pred(x) = 0’) is only
well-defined in conjunction with Q (say ‘x �= 0’).

The proofs of the rules of basicFoPCeD are discussed later in �6.4.

Derived Logical Operators. Once we have derived the rules of basicFoPCeD

stated above, we may use them directly (i.e. without the detour through) se-
quents) to derive the corresponding WD preserving proof rules for the derived
logical operators *, ∨, ⇒, ⇔ and ∃. The statements of these rules can be found
in �4.5.3 of [17]. The only rule here that needs modification is the existential
dual of ∀hyp (i.e. ∃goal). The resulting proof rules constitute our complete WD
preserving proof calculus FoPCeD .

Conditional Definitions. The payoff achieved by using FoPCeD instead of FoPCe
in proofs is that conditional definitions in FoPCe become ‘unconditional’ in
FoPCeD . The ‘)D ’ version of the fdef rule from �3 is:

)D y = f(�x) ⇔ Df
�x,y

fdef D

The above rule can be derived from fdef since D
(

y = f(�x) ⇔ Df
�x,y

)
⇒ Cf

�x . The
above rule differs from fdef in that it does not explicitly require the WD condition
‘Cf

�x ’ in order to be applied. This makes proofs involving partial functions shorter
and less tedious to perform. As a result, derived rules such as ‘x �= 0) pred(x +
y) = pred(x) + y’ can also be applied without explicitly having to prove its
premise ‘x �= 0’.

Proofs of basicFoPCeD . The proofs of each rule in basicFoPCeD that appear
in �6.4 follow essentially from)Deqv , the properties of D, and the rules in FoPCe .
Since some of the proofs are not straightforward we outline some of their major
steps in this section as an aid the reader who wants to reproduce them. This
section may otherwise be skipped.

The proofs of hypD , ⊥hypD and = goalD are trivial since these rules contain
no antecedents. In general, any valid rule having no antecedents is trivially WD
preserving.

The proofs for monD , contrD , ¬goalD , ¬hypD , and ∧hypD are straightforward
and similar in style to the proof of cutD shown below:

H)DD(P) H)DP H, P)DQ

H)DQ
cutD

H)DD(P)

D̂(H),D(Q), H) D(P)
(9);)Deqv

H)DP H, P)DQ

D̂(H),D(Q), H,D(P)) Q
cut (P);)Deqv

D̂(H),D(Q), H) Q
cut (D(P))

H)DQ
)Deqv

A Practical Approach to Partiality – A Proof Based Approach 251

The proofs of ∀hypD and = goalD require the following additional properties
about how D interacts with the substitution operator:

D([x := E]F) ⇒ [x := E]D(F) (17)
([x := E]D(F)) ∧ D(E) ⇒ D([x := E]F) (18)

Both these properties can be proved by induction on the structure of basic
formulæ.

The proofs of ∧goalD and ∀goalD are tricky and require rewriting definitions
(7) and (8) as follows:

D(P ∧ Q) ⇔ (D(P) ∧ (P ⇒D(Q))) ∨ (D(Q) ∧ (Q ⇒D(P))) (19)
D(∀x·P) ⇔ ∃x· (D(P) ∧ (P ⇒∀x·D(P))) (20)

Using these equivalences instead of (7) and (8) allows for more natural case
splits in these proofs. The proof of ∧goalD is similar to the proof of ∀goalD
shown below:

H)DP

H)D∀x·P ∀goalD (x nfin H)

H)DP

D̂(H),D(P), H) P
)Deqv

H)DP

D̂(H), ∀x·D(P), H) P
∀hyp;)Deqv

D̂(H), ∀x·D(P), H) ∀x·P
∀goal (x nfin H)

D̂(H),D(P), ∀x·D(P), H) ∀x·P
mon(D(P))

D̂(H),D(P), P ⇒∀x·D(P), H) ∀x·P
⇒hyp

D̂(H), ∃x·(D(P) ∧ (P ⇒∀x·D(P))), H) ∀x·P
∃hyp;∧hyp

H)D∀x·P)Deqv ; (20)

Note that the rules ⇒hyp and ∃hyp above are the standard left hand sequent
calculus rules for implication and existential quantification. We now summarise
the results of this section.

6.5 Summary

In this section we have shown how the notion of well-definedness can be in-
tegrated into proofs by extending the definition of D to sequents (�6.1), and
characterising well-defined ‘)D ’ sequents (�6.2). We have derived the proof rule
)Deqv (�6.2) that allows us to freely move between ordinary ‘)’ sequents and
well-defined ‘)D ’ sequents in proofs. We have formally derived the proof calculus
FoPCeD (�6) whose rules preserve well-definedness. The rules of FoPCeD are
identical to those in FoPCe except for three cases (cut , ∀hyp and its dual ∃goal)
where additional WD sub-goals need to be proved.

We now return to the practical issue of proving the WD and Validity proof
obligations introduced in �4.

252 F. Mehta

7 Proving WDD and ValidityD

In �6.2 we re-stated our original proof obligations from �4 in terms of ‘)D ’ as
follows:

WDD :)D D(H) G) ValidityD : H)DG

Proving WDD . In our practical setting we factor out proving WDD for each proof
obligation individually by proving instead that the (source) models used to gener-
ate these proof obligations are well-defined. Details on well-definedness of models
can be found in [7]. We are guaranteed that all proof obligations generated from
a well-defined model are themselves well-defined and therefore do not need to
generate or prove the well-definedness of each proof obligation individually. This
considerably reduces the number of proofs that need to be done.

Proving ValidityD . From the ‘)D ’ turnstile we immediately see that the initial
sequent of ValidityD is well-defined. We have two choices for how to proceed with
this proof. We may either use FoPCeD to preserve well-definedness, or the stan-
dard FoPCe.

We prefer using the WD preserving calculus FoPCeD (with additional WD
sub-goals) instead of FoPCe for interactive proofs for three reasons. Firstly, as
seen in �4, the assumption that a sequent is well-defined can be used to greatly
ease its proof. Secondly, the extra WD sub-goals require only minimal addi-
tional effort to prove in practice, and are in most cases automatically discharged.
Thirdly, proving WD sub-goals allows us to filter out erroneous ill-defined for-
mulæ entered by the user.

Alternatively, we may use the rule)Deqv (�6.2) to make the well-definedness
assumptions of a ‘)D ’ sequent explicit and use the standard proof rules in FoPCe
to complete a proof. This may not be a prudent way to perform interactive proof,
but it allows us to use existing automated theorem provers for FoPCe (that do
not have any notion of well-definedness) to automatically discharge pending sub-
goals, for which we have observed favourable results.

8 Related Work

A lot of work has been done in the area of reasoning in the presence of partial
functions. A good review of this work can be found in [13] and [4]. In this section
we first describe some approaches that are most relevant to the work presented
in this paper and then compare our work to these approaches in �8.1.

The current approaches to reason about the undefined can be classified into
two broad categories: those that explicitly reason about undefined values using
a three-valued logic [16], and those that avoid reasoning about the undefined
using underspecification [13]. We start with the former.

A well known approach is the Logic of Partial Functions (LPF) [15,6] used by
the VDM [14] community. Its semantics is based on three-valued logic [16]. The

A Practical Approach to Partiality – A Proof Based Approach 253

resulting proof calculus for LPF can then be used to simultaneously prove the
validity and well-definedness of a logical statement. A drawback of using LPF
(or any other special-purpose proof calculus) is that it differs from the standard
predicate calculus since it disallows use of the law of excluded middle (to avoid
proving ‘3/0 = x ∨ 3/0 �= x’) and additionally requires a second ‘weak’ notion of
equality (to avoid proving ‘3/0 = 3/0’). Additional effort is therefore needed to
learn or automate LPF, as for any special-purpose proof calculus, as mentioned
in �1.

In PVS [19], partial functions are modelled as total functions whose domain
is a predicate subtype. For instance, the partial function ‘/’ is defined as a to-
tal function whose second argument belongs to the subtype of non-zero reals.
Type-checking then avoids ill-definedness but requires proof. The user needs to
prove type correctness conditions (TCCs) before starting or introducing new for-
mulæ into a proof. A shortcoming of this approach is that type-checking requires
complicated typing rules [20] and special tool support. This approach addition-
ally blurs the distinction between type-checking (which is usually accepted to be
automatically decidable) and proof.

In [7], Behm et al. use a three-valued semantics to develop a proof calculus
for B [2]. Its main difference from LPF is that the undefined value, although
part of the logical semantics, does not enter into proofs, as explained below.
In this approach, all formulæ that appear in a proof need to be proved to be
well-defined. Proving well-definedness is similar to proving TCCs in PVS. It has
the role of filtering out expressions that may be ill-defined. Once this is done,
the proof may continue in a pseudo-two-valued logic since the undefined value
is proved never to occur. The drawback of this approach is similar to that of
LPF. Although the proof calculus presented for this pseudo-two-valued logic “is
close to the standard sequent calculus”[7], this too is a special-purpose logic. No
concrete connection with the standard predicate calculus is evident since this
approach, from the start, assumes a three-valued semantics.

In [4], Abrial and Mussat formalise the notion of well-definedness without any
detour through a three-valued semantics, remaining entirely within the “syn-
tactic manipulation of proofs”[4] in standard predicate calculus. The resulting
well-definedness filter is identical to that in [7]. They formally show how prov-
ing statements that passed this filter could be made simpler (i.e. with fewer
checks) on the basis of their well-definedness. What is missing in [4] however is
a proof calculus (like the one in [7]) that preserves well-definedness, which could
additionally be used for interactive proof.

In [8], Berezin et al. also use the approach of filtering out ill-defined statements
before attempting to prove them in the automated theorem prover CVC lite. The
filter used is identical to the one used in [7] and [4]. Although they too start from
a three-valued logic, they show (using semantic arguments) how the proof of a
statement that has passed this filter may proceed in standard two-valued logic.
Apart from introducing three-valued logic only to reduce it later to two-valued
logic, this approach is concerned with purely automated theorem proving and
therefore provides no proof calculus that preserves well-definedness to use in

254 F. Mehta

interactive proofs. It is advantageous to preserve well-definedness in interactive
proofs (reasons for this are given in �4).

The idea of avoiding reasoning about undefined values using underspecifica-
tion [13] is used in many approaches that stick to using two-valued logic in the
presence of partial functions. This is the approach used in Isabelle/HOL [18],
HOL [12], JML [9] and Spec# [5]. In this setting, an expression such as ‘3/0’ is
still a valid expression, but its value is unspecified. Although underspecification
allows proofs involving partial functions to be done in two-valued logic, it has
two shortcomings. First, (as described in �3) it also allows statements that con-
tain ill-defined terms such as ‘3/0 = 3/0’ to be proved valid. In the context of
generating or verifying program code, expressions such as ‘3/0’ originating from
a proved development can lead to a run-time error as described in [9]. Second,
doing proofs in this setting may require repeatedly proving that a possibly unde-
fined expression (e.g. ‘3/x’) is actually well defined (i.e. that ‘x �= 0’) in multiple
proof steps.

8.1 Comparison

In this section we compare the approach presented in this paper (�5, �6) with
the related work just presented. The work presented here extends the approach
of [4] by showing how the notion of well-definedness can be integrated into a
proof calculus that is suitable for interactive proof.

The role of proving TCCs in PVS is identical to that of proving well-
definedness in our approach (i.e. proving the WD proof obligation and the ad-
ditional WD sub-goals in cutD , ∀hypD , and ∃goalD). With regards to its logical
foundations, we find the possibility of directly defining truly partial functions
in our setting more convenient and intuitive as opposed to expressing them as
total functions over a restricted subtype. The logical machinery we use is much
simpler too since we do not need to introduce predicate subtypes and dependent
types for this purpose. Since we use standard (decidable) type-checking we have
a clear conceptual separation between type-checking and proof. Although our
approach does not eliminate the undecidability of checking well-definedness, it
saves type checking from being undecidable.

With respect to B [7] and LPF [6], the approach used here does not start from
a three-valued semantics but instead reduces all reasoning about well-definedness
to standard predicate calculus. We develop the notion of well-definedness purely
on the basis of the syntactic operator ‘D’ and proofs in standard predicate calcu-
lus. In �6 we derive a proof calculus preserving well-definedness that is identical
to the one presented in [7]. Alternatively, we could have chosen to derive the
proof calculus used in LPF in a similar fashion. If our definition of well-defined
sequents is modified from the one appearing in �6.2 to

H)
LPF

G =̂ D̂(H), H) G ∧D(G) (21)

the rules that follow for a proof calculus that preserves ‘)
LPF

’ correspond to those
in LPF [6]. The only difference between ‘)

LPF
’ and ‘)D ’ is that the latter also as-

sumes the well-definedness of the goal, whereas this has to be additionally proved

A Practical Approach to Partiality – A Proof Based Approach 255

for ‘)
LPF

’. We therefore have a clear basis to compare these two approaches. In
LPF, well-definedness and validity of the goal are proved simultaneously, whereas
in [7] (and also as presented in �4), these two proofs are performed separately,
where proving WD acts as a filter. Since what is proved is essentially the same,
the choice of which approach to use is a methodological preference. We use the
latter approach although it requires proving two proof obligations because of four
reasons. First, the majority of the WD sub-goals that we encounter in practice
(from models and interactive proof steps) are discharged automatically. Second,
failure to discharge a proof obligation due to ill-definedness can be detected
earlier and more precisely, before effort is spent on proving validity. Third, the
structure of ‘)D ’ sequents allows us to more directly use the results in [4] and [8]
to automate proofs. Fourth, we find FoPCeD more intuitive to use in interactive
proofs since its rules are ‘closer’ to the standard sequent calculus (only three
rules need to be modified with an extra WD sub-goal).

An additional contribution over [7] (and [6]) is that we may, at any time,
choose to reduce all our reasoning to standard predicate calculus (using the
)Deqv rule derived in �6.2). This is a choice that could not be taken in [7].

We now compare our work to related approaches that use underspecifica-
tion [13]. As described in �3, underspecification is the starting point from which
we develop our approach. The work presented in this paper can be used to over-
come two of the shortcomings the underspecification approach mentioned earlier.
First, (as discussed in �4) proving the well-definedness of proof obligations (or of
the source model) gives us an additional guarantee that partial (underspecified)
functions are not evaluated outside their domain in specifications or program
code. This has been recently done along similar lines for Spec# [5] in [21]. Sec-
ond, (as discussed in �4 and �6.3) preserving well-definedness in proofs allows
us to avoid having to prove well-definedness repeatedly, every time we are con-
fronted with a possibly ill-defined expression during proof.

9 Conclusion

In this paper we have shown how standard predicate calculus can be used to
reason in a setting with potentially ill-defined expressions by extending it with
new syntax and derived rules for this purpose.

The results presented in �6 provide a deeper understanding of reasoning in
the context of well-definedness, and its connection with the standard predicate
calculus. This work has also resulted in reducing the proof burden in the par-
tial setting by providing better tool support within the RODIN development
environment [1] for Event-B since:

– Sequents contain less hypotheses because all well-definedness hypotheses are
implicit in well-defined sequents, as described in �6.2.

– Conditional definitions become unconditional as described in �6.4.
– Derived rules contain less preconditions as discussed in �4 and �6.4.
– All proofs can be reduced to proofs in standard two-valued predicate calculus

as seen from the)Deqv rule in �6.2 and discussed in �7.

256 F. Mehta

Acknowledgements

The author would like to thank Jean-Raymond Abrial, Cliff Jones, John Fitzger-
ald, David Basin, Laurent Voisin, Adam Darvas and Vijay D’silva for their com-
ments and lively discussions.

References

1. Rigorous Open Development Environment for Complex Systems (RODIN) official
website, http://www.event-b.org/

2. Abrial, J.-R.: The B-Book: Assigning programs to meanings. Cambridge (1996)
3. Abrial, J.-R.: Modeling in Event B: System and Softtware Design. Cambridge (to

appear, 2007)
4. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:

Bert, D., Bowen, J., Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 242–269. Springer, Heidelberg (2002)

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, pp. 49–69 (2005)

6. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program
proofs. Acta Inf. 21, 251–269 (1984)

7. Behm, P., Burdy, L., Meynadier, J.-M.: Well defined B. In: Bert, D. (ed.) B 1998.
LNCS, vol. 1393, pp. 29–45. Springer, Heidelberg (1998)

8. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L.: A
practical approach to partial functions in CVC Lite

9. Chalin, P.: Logical foundations of program assertions: What do practitioners want?
In: SEFM, pp. 383–393 (2005)

10. Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness checking. In: Inter-
national Joint Conference on Automated Reasoning (IJCAR). LNCS. Springer,
Heidelberg (to appear, 2008)

11. Fitzgerald, J.S., Jones, C.B.: The connection between two ways of reasoning about
partial functions. Technical Report CS-TR-1044, School of Computing Science.
Newcastle University (August 2007)

12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher order logic. Cambridge University Press, New York (1993)

13. Gries, D., Schneider, F.B.: Avoiding the undefined by underspecification. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 366–373. Springer,
Heidelberg (1995)

14. Jones, C.B.: Systematic software development using VDM, 2nd edn. Prentice-Hall,
Inc., Englewood Cliffs (1990)

15. Jones, C.B.: Reasoning about partial functions in the formal development of pro-
grams. Electr. Notes Theor. Comput. Sci. 145, 3–25 (2006)

16. Kleene, S.C.: Introduction to metamathematics. Bibl. Matematica. North-Holland,
Amsterdam (1952)

17. Mehta, F.D.: Proofs for the Working Engineer. PhD thesis, ETH Zurich (2008)
18. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
19. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system, Jan-

uary 15 (2001)

http://www.event-b.org/

A Practical Approach to Partiality – A Proof Based Approach 257

20. Owre, S., Shankar, N.: The formal semantics of PVS (March 1999),
http://www.csl.sri.com/papers/csl-97-2/

21. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method spec-
ifications. In: Formal Methods (FM). LNCS. Springer, Heidelberg (2008)

22. Sutcliffe, G., Suttner, C.B.: The TPTP (Thousands of Problems for Theorem
Provers) Problem Library: CNF Release v1.2.1. Journal of Automated Reason-
ing 21(2), 177–203 (1998)

http://www.csl.sri.com/papers/csl-97-2/

A Representative Function Approach to

Symmetry Exploitation for CSP Refinement
Checking

Nick Moffat1, Michael Goldsmith2, and Bill Roscoe3

1 QinetiQ, Malvern, UK and Kellogg College, University of Oxford, UK
nick.moffat@kellogg.ox.ac.uk

2 Formal Systems (Europe) Ltd and Worcester College, University of Oxford, UK
michael@fsel.com

3 Oxford University Computing Laboratory, Oxford, UK
bill@comlab.ox.ac.uk

Abstract. Effective temporal logic model checking algorithms exist that
exploit symmetries arising from parallel composition of multiple identical
components. These algorithms often employ a function rep from states
to representative states under the symmetries exploited. We adapt this
idea to the context of refinement checking for the process algebra CSP.
In so doing, we must cope with refinement-style specifications. The main
challenge, though, is the need for access to sufficient local information
about states to enable definition of a useful rep function, since compi-
lation of CSP processes to Labelled Transition Systems (LTSs) renders
state information a global property instead of a local one. Using a struc-
tured form of implementation transition system, we obtain an efficient
symmetry exploiting CSP refinement checking algorithm, generalise it in
two directions, and demonstrate all three variants on simple examples.

1 Introduction

Model checking suffers from the state explosion problem, which is the tendency
for state space to grow exponentially in size (number of states) as the size of
the model (system description in the modelling language) grows. A simple ex-
ample is the exponential state space growth that can occur when adding parallel
components.

A popular approach to combating the state explosion problem is to exploit
state space symmetries. This approach has received much attention in the con-
text of temporal logic state-based model checking ([1] contains a survey), but
little has been published in the context of refinement checking (“refinement-style
model checking”) for process algebras.

For temporal logic model checking, effective algorithms exist that exploit sym-
metries arising from parallel composition of multiple identical components. The
most common approach uses a function rep from states to representative states
and requires full symmetry of the model and the property. We adapt this idea for
Communicating Sequential Processes (CSP) [2,3] refinement checking. The main

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 258–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Representative Function Approach to Symmetry Exploitation 259

challenge, which may be considered a significant obstacle, is the need for local
information about states to enable use of a rep function; compiling CSP pro-
cesses to Labelled Transition Systems (LTSs) makes state information a global
property, not a local one.

By exploiting a richer notation than LTSs, namely ‘structured machines’ (al-
ready used internally by the FDR [4] refinement checker for other reasons), we
can define a suitable rep function. We obtain a refinement checking algorithm
that explores a reduced state space efficiently for fully symmetric systems that
have parallel components.

We generalise this algorithm in two directions. First we drop the requirement
for full symmetry. Second we allow a larger class of property specifications: in
the temporal logic model checking context, restricting to symmetric temporal
logic property formulae effectively requires that the future behaviour allowed by
the formula is always symmetric, regardless of what has happened in the past; in
contrast, our second generalisation only needs the specification process (corre-
sponding to a property formula) to express symmetric behaviour starting at the
initial state. We restrict attention to refinement in CSP’s traces model, which
allows one to check safety properties; the algorithms extend to other semantic
models.

An earlier paper [5] outlined some of our work aimed at efficient identification
of CSP process symmetries, and included an approach to exploit symmetries
when refinement checking. The exploitation approach in this paper is different.

Section 2 provides background regarding the process algebra CSP and refine-
ment checking between CSP processes. Section 3 defines CSP process symmetry.
Section 4 outlines the representative function approach to symmetry exploitation
for temporal logic model checking. Section 5 describes structured machines and
briefly describes some syntactic rules for identifying symmetries. Section 6 gives
our basic symmetry exploiting refinement checking algorithm and Section 7 ex-
tends it in the two directions mentioned above. Section 8 presents experimental
results and Section 9 concludes. An appendix contains correctness proofs.

2 CSP Language, Refinement, LTSs and Refinement
Checking

2.1 CSP and Refinement

Process algebras such as CSP [2,3] allow systems to be modelled as processes,
which may be atomic (for example CSP’s STOP process) or may be defined as
compositions of other, child, processes using available process operators.

CSP has a variety of process operators, including: interleaving (|||); generalised
parallel (‖X) and alphabetised parallel (X ‖Y), where processes must synchronise
on alphabet X or alphabet X ∩ Y ; internal choice (�) and external choice(�);
hiding (\X); and renaming([[R]]), for relation R on events.

Refinement of a process Spec by a process Impl amounts to all behaviours (of
some kind, such as the finite traces) of Impl being behaviours of Spec. In the
traces semantic model, T, a behaviour is a finite trace the process can perform.

260 N. Moffat, M. Goldsmith, and B. Roscoe

1

4

move.1.A.C 2

0

move.1.C.B 5

move.1.C.A 7

complete.B

3

move.1.B.A 8

6

move.2.A.C

move.2.C.A

m
ove.1.A

.B

complete.C

move.1.B.C

move.1.A.B m
ov

e.
1.

A
.C

move.1.C.B

move.1.A.B

move.1.B.A

move.1.C.A

m
ov

e.
1.

C
.B

m
ove.1.B

.C

move.1.A.C

move.1.B.C

m
ov

e.
1.

B
.A

move.2.B.A
move.2.A.B

complete.A

m
ove.2.C

.B

m
ov

e.
2.

B
.C

m
ove.1.C

.A

Fig. 1. An LTS for Towers of Hanoi with 3 poles and 2 discs. Dashed arrows show a
(B C)-bisimulation relation, which can be ignored until Section 3.

2.2 Labelled Transition Systems

A widely used operational form for CSP processes is the Labelled Transition
System (LTS). An LTS is a tuple (S ,T , s0) where S is a set of states (sometimes
called nodes), T : S × Σ × S (for universal event set Σ) is a labelled transition
relation, and state s0 is the initial state. An LTS path 〈s0, e1, s1, . . . , en , sn〉 has
the trace 〈e1, . . . , en〉.

The LTS in Figure 1 represents the Towers of Hanoi puzzle with 3 poles and
2 discs. The initial state is shaded. Solid arrows depict the transition relation.
An event move.d.x.y represents movement of disc d from pole x to pole y, and
an event complete.x represents an announcement that all discs are on pole x.
Dashed arrows show a (B C)-bisimulation relation, explained in Section 3.

2.3 Refinement Checking

CSP refinement checking algorithms operate over transition systems TSpec and
TImpl of a specification process, Spec, and an implementation process, Impl . Each
transition system is a compiled form of the process and supports calculation of
the initial state and the set of transitions. Transition system TSpec is required to
be an LTS in normal form [3,6], which ensures that no two paths of TSpec with
the same trace end at different states.

The usual refinement checking algorithm [6] explores the product space of
(Spec state, Impl state) pairs such that a common trace can take the specification
and implementation to the respective states. Exploration starts at the initial
state pair and continues until a counterexample has been reached or all successors
of reached pairs have been found.

A Representative Function Approach to Symmetry Exploitation 261

Although it is usual to refer to these as ‘pairs’ (and we do so throughout), re-
finement checking algorithms generally record tuples of at least four values; they
explore a product space and record extra information as they go, as explained
below.

At each pair reached: (i) ‘compatibility’ of the implementation state with the
specification state is checked; (ii) all successor state pairs are added to the set
of pairs seen so far. The compatibility test depends on the semantic model used
for the check; for the traces model it simply checks that all events labelling out-
going transitions of the implementation state are among the labels on outgoing
transitions from the specificiation state.1

If an incompatible state pair is reached then a counterexample trace to this
pair is recovered by stepping through the implementation transition system back-
wards until its initial state is reached; this is possible since the identifier of a
parent pair is recorded with each newly reached state pair, plus an event from
the parent to this pair.

3 CSP Symmetry and Permutation Bisimulations

For process algebras, symmetry acts principally on events/actions; states (equiv-
alently, processes) correspond to particular sets of possible future behaviours.
Event permutations lift naturally to state (or process) permutations: through-
out the paper, the permutation of a process P by an event permutation σ, written
Pσ, is the functional renaming2 of P according to σ. So Pσ is the process that
can perform event xσ whenever P can perform an event x . Also, =T denotes
traces equivalence.

3.1 Algebraic and Denotational Permutation Symmetry

Perhaps the simplest definition of CSP symmetry is in the algebraic semantics.
Let σ be any permutation of events in some universal event set Σ, where we insist
that τσ = τ (i.e., that the special CSP event τ , denoting an internal action, is
unaffected by σ). Then we say that a process P is σ-symmetric in the traces
semantic model, T, when P =T Pσ.

Notice that we do not restrict σ to preserve channels: we allow permutations
that map, say, a.2 to b.44. However, we may anticipate that a common form of
event permutation will be the canonical lifting of a datatype permutation: for
example, if δ is a permutation of a datatype D and c is a CSP channel carrying
data of type D , then the canonical lifting of δ to an event permutation σ maps
events c.x to c.(xσ). When events have complex datatypes, the canonical lifting

1 Internal transitions, labelled by special event τ , are removed from the specification
transition system by normalising it, which ensures that no two specification states
are reachable by the same trace. Pair (u, v ′) is treated as a successor to (u, v) if v
has a τ transition to v ′. For details, see [3] or [6].

2 Injective functional renaming is defined on page 87 of [3]. Equivalently, we may write
Pσ as P [[σ]] using CSP’s relational renaming operator.

262 N. Moffat, M. Goldsmith, and B. Roscoe

applies the datatype permutation to all fields having that type. For succintness,
we will sometimes represent an event permutation σ by a datatype permuta-
tion, in which case σ is understood to be the canonical lifting of this datatype
permutation.

The equivalent denotational definition of CSP symmetry is also straightfor-
ward: process P is σ-symmetric in T if the set value that P denotes in T – the
set of finite traces of P – is itself symmetric according to σ, that is, if the set
of permuted elements of this set (where each element is permuted by σ lifted to
traces) is the set itself.

3.2 Operational Permutation Symmetry

Before defining LTS symmetries we remark that, as one would expect, permuta-
tion symmetries of LTSs imply the same symmetries of the processes they repre-
sent (though structurally asymmetric LTSs can represent symmetric processes).

Our definition of LTS symmetries uses the more general notion of permuta-
tion bisimulations, or pbisims for short, which were introduced in [5]. Permu-
tation bisimulation extends the classical notion of (strong) bisimulation [7,8].
For event permutation σ, a binary relation R over the nodes S of an LTS L is
a σ-bisimulation if R is a σ-simulation of L and R−1 is a σ−1-simulation of L.
Permutation simulation extends the classical notion of simulation: classical sim-
ulation requires that (1) if pRp′ ∧ p a→ q ∈ L, then ∃ p′ a→ q ′ ∈ L s.t. qRq ′;
and (2) ∀ p ∈ S , ∃ p′ ∈ S s.t. pRp′; instead, σ-simulation requires p′ aσ→ q ′ in the
consequent of the first condition.

We treat τ events the same way as visible events; when a = τ we require
that p′ τ→ q ′ (recall that our event permutations do not affect τ). A possible
generalisation is to consider the permutation analogue of weak bisimulation [8].
Our use of strong bisimulation admits fewer symmetries.

Two nodes are σ-bisimilar if there is a σ-bisimulation that relates them. Per-
mutation bisimilarity captures the equivalence of processes represented by LTS
nodes in the following sense: if node x is σ-bisimilar to node y, then the process
represented by y equals (in T) the process represented by x (P , say) renamed
by σ (i.e., Pσ).

LTS symmetry can now be defined in terms of permutation bisimulation: for
permutation σ, an LTS L for a process P is σ-symmetric iff some σ-bisimulation
relates L’s initial state s0 to itself (i.e., s0 is σ-bisimilar to itself). The LTS of
Figure 1 is (B C)-symmetric as the (B C)-bisimulation shown relates the initial
node to itself.

3.3 Group Symmetry

The above definitions lift easily to group symmetry, as follows. Let G be a group
of event permutations. Then a process P , or LTS L, is G-symmetric if it is
σ-symmetric for each σ in G. (It is clearly sufficient to be σ-symmetric for each
of a set of generators of G.)

A Representative Function Approach to Symmetry Exploitation 263

4 Symmetry and Temporal Logic Model Checking

This section summarises the temporal logic model checking problem and out-
lines what may be called the “representative function” approach to symmetry
exploitation in that context, broadly following the presentation in [1].

A Kripke structure over a set AP of atomic propositions is a tuple M =
(S ,R,L,S0) where: (1) S is a non-empty finite set of states; (2) R ⊆ S × S is
a total transition relation; (3) L : S → 2AP is a mapping that labels each state
in S with the set of atomic propositions true in that state; and (4) S0 ⊆ S is a
set of initial states. Temporal logic model checking determines whether a given
Kripke structure M satisfies a given formula φ expressed in some temporal logic
(often CTL* or one of its sub-logics LTL or CTL); this is denoted M � φ and
amounts to φ holding in each initial state of M .

The representative function approach to symmetry exploitation is applicable
with symmetric formulae φ w.r.t. a group G of automorphisms of M (which are
state permutations that preserve the transition relation R). A symmetric CTL*
formula φ w.r.t. a group G of state permutations is one where, for every maximal
propositional subformula f in φ, f holds in a state s iff it holds in state λ(s) for
each λ in G. So, symmetric formulae are such that the validity of each maximal
propositional subformula is unaffected by permutations in G.

Further, this approach requires that M represents a parallel composition of
identical components and that each element of G permutes the values of state
variables according to a permutation of component indices.

The idea is to use a ‘representative’ function, usually called rep, chosen ac-
cording to a symmetry group G where φ is known to be symmetric w.r.t. G.
This function maps each state s of the Kripke structure to a representative state
rep(s) in the same G-orbit as s , where G-orbits are equivalence classes induced
by the relation “is related to by some permutation in G”. That is, the function
rep maps each state to a representative state to which it is related by some
permutation in G.

A quotient Kripke structure MG = (SG ,RG ,LG ,S 0
G) is generated where: SG =

{rep(s) | s ∈ S}, RG = {(rep(s), rep(s ′)) | (s , s ′) ∈ R}, LG(rep(s)) = L(rep(s)),
S 0
G = {rep(s) | s ∈ S0}. The quotient structure is then checked against the

original formula φ. It has been proved that M � φ iff MG � φ [9,10]. The quotient
check is up to n! times faster than the original, for n identical components, and
can consume significantly less memory.

5 Structured Machines and Their Symmetries

5.1 Structured Machines

A structured machine represents an LTS as an operator tree with a CSP process
operator at each non-leaf node and an LTS at each leaf. Alphabets are associ-
ated with child nodes as appropriate for the parent node’s CSP operator (i.e.,
according to the number of operand alphabets). Structured machines reflect an

264 N. Moffat, M. Goldsmith, and B. Roscoe

upper part of a process expression’s algebraic structure. They are called config-
urations in [3,6]. They can be much smaller than equivalent LTSs, being linear
in the number of component processes of a parallel composition; they can often
be operated on very efficiently.

The example in Figure 2 represents a process P = ‖ p : PEGS • [interface(p)]
POLE (p) for a datatype PEGS = {A, B, C} and alphabet- and process-valued
functions interface/1 and POLE/1. Their definitions are not shown, but LTSs
for the leaf processes POLE (A) etc. are depicted in the right-hand portion of
Figure 2. The initial node of each leaf LTS is shaded. The same process P is
represented explicitly by the LTS of Figure 1.

For simplicity, we consider only single-configuration processes, which has the
effect of allowing only a subset of CSP process operators outside recursive defini-
tions: parallel operators, hiding and renaming. In practice many processes have
this form.

A structured machine with a top level parallel operator has states in tuple
form – each component denotes the local state of a particular leaf LTS. Hence
the initial state of the 3-pole Towers of Hanoi structured machine in Figure 2 is
(0,0,0), since each leaf starts in its local state 0. (Alternatively, we could write
(1:0,2:0,3:0) but we omit the leaf identifiers.) Subsequent states of this machine
are reached by the leaves evolving according to their local states, synchronised
with each other on their respective interface alphabets. For example, initial state

move.1.A.C
move.1.B.C,

move.1.C.B
move.1.C.A

complete.C

move.1.C.A
move.1.B.A,

move.1.A.B
move.1.A.C

move.2.A.B
move.2.A.C,

move.2.C.A
move.2.B.A

1:0

2:0

1:1

move.1.A.B
move.1.C.B,

move.1.A.B
move.1.C.B,

move.1.B.C
move.1.B.A

move.2.A.B
move.2.B.A

move.2.B.C,

move.1.B.A

3:1

3:2 3:3

complete.B

move.1.B.C,

move.2.C.B,

move.1.C.B,move.1.A.C
move.1.B.C,

move.2.A.C

move.2.B.C,
move.2.A.B

move.2.C.B,

move.1.C.A

2:1

2:2 2:3

1:2 1:3
complete.A move.1.A.C

move.1.A.B,

move.1.C.A
move.1.B.A

interface(A)

interface(B)

interface(C)
parallel

3:0

Fig. 2. A structured machine for Towers of Hanoi with 3 poles and 2 discs, with alpha-
betised parallel at the root. Dashed arrows show a (B C)-bisimulation on LTS nodes.

A Representative Function Approach to Symmetry Exploitation 265

(0,0,0) has a transition labelled move.1.A.B to state (1,0,1); leaf 2 represents
pole C and is not involved in this transition.

5.2 Structured Machine Symmetries

Symmetries of a structured machine can be represented conveniently using per-
mutation bisimulations between the nodes of its leaf LTSs, as demonstrated by
the (B C)-bisimulation in Figure 2. A single permutation bisimulation may re-
late nodes of a single leaf LTS, or nodes of different leaf LTSs. Permutation
bisimulations can often be found by exploiting the structure of CSP process ex-
pressions, as explained below. Operational and algebraic approaches to checking
symmetries and permutation bisimulations were discussed briefly in [5]. The al-
gebraic approach is well suited to efficient identification of structured machine
symmetries, so it is described here.

Table 1 expands the table in [5]. It gives a selection of rules that relate
trace symmetries of processes to those of sub-processes and alphabets. Due to
space limitations, Table 1 is incomplete and we omit our proofs of these results.
Throughout, σ is taken to be an event permutation. For an alphabet X (A, H or
A(i) in the table), Xσ denotes the set {xσ | x ∈ X }. In rules 9-13, σ permutes
indices in the set I and events according to the corresponding canonical lifting.

Rules 4 and 5 are alternative instances of rule 10 for two sub-processes: rule
4 is obtained when σ maps P to P and Q to Q , and rule 5 is obtained when σ
swaps P and Q ; rechristening P as P(1) and Q as P(2), the distinction is how σ
acts on the indices 1 and 2 in rule 10, i.e. on whether σ maps 1 to 1 and 2 to 2,

Table 1. Some exact (1 and 2) and sufficient (3-13) conditions for CSP process
symmetry

Proc (Proc)σ =T Proc Explanation of Proc

1 STOP True STOP has only empty trace

2 ?x : A→P(x) Aσ = A ∧ ∀ x ∈ A, P(xσ) =T P(x)σ Accept x in A, become P(x)

3 P � Q Pσ =T P ∧ Qσ =T Q External choice of P and Q

4 P ‖
A

Q Pσ =T P ∧ Qσ =T Q ∧ Aσ = A P and Q synchronised on A

5 P ‖
A

Q Pσ =T Q ∧ Qσ =T P ∧ Aσ = A P and Q synchronised on A

6 P ; Q Pσ =T P ∧ Qσ =T Q P then (on termination) Q

7 P \ H Pσ =T P ∧ Hσ = H P with events in H hidden

8 P [[R]] ∃ ρ • Pρ =T P ∧
∀ a ∈ α(P), aRb ⇒ (aρ)R(bσ−1) P renamed by event relation R

9 |||i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ Interleaving of all ‘P(i)’s

10 ‖
Ai∈I

P(i) ∀ i ∈ I , P(iσ) =T P(i)σ ∧ Aσ = A Generalised parallel of ‘P(i)’s

11 ‖i∈I (A(i), P(i)) ∀ i ∈ I , P(iσ) =T P(i)σ ∧ A(iσ) = A(i)σ ‘P(i)’s synchronised on ‘A(i)’s

12 �i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ External choice of ‘P(i)’s

13 �i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ Internal choice of ‘P(i)’s

266 N. Moffat, M. Goldsmith, and B. Roscoe

or swaps 1 and 2. Rule 3 is an instance of rule 12. In this way, specialised rules
can be derived easily from rules 9-13. Rule 8 uses ‘exact alphabet’ function α.

Rules 9-13 allow one to infer symmetries that are (liftings of) index permu-
tations. These rules can be generalised, replacing ∀ i ∈ I , P(iσ) =T P(i)σ by
∃ index permutation ρ • ∀ i ∈ I , P(iρ) =T P(i)σ, where ρ permutes indices and
σ permutes events.

Most of the rules are deliberately approximate. Informally, they only allow
‘easy’ symmetries to be identified – symmetries one would expect to hold ‘at
first glance’. This helps to make them simple and easy to implement. Reasoning
with such rules will generally miss some symmetries, but we expect they would
find most that arise in practice. Some approximation is necessary, as finding all
symmetries would in general be too computationally demanding.

One approach to cope with recursive definitions would be to calculate con-
ditions iteratively and terminate on reaching a fixed point. This would require
some supporting theory to argue termination and perhaps uniqueness of the
fixed point. We take the simpler approach of identifying symmetry of recursive
processes operationally [5], by examining transition systems (LTSs, in fact) that
represent them.

We have developed a prototype tool which implements extended versions of
these rules, for deciding whether any given processes Proc1 and Proc2 are mu-
tually permutation symmetric by a given event permutation σ, that is, whether
Proc1σ =T Proc2. (It is straightforward to extend the rules in this way.) By
choosing Proc1 = P(x) and Proc2 = P(xσ), the extended rules can also be
used for checking permutation transparency conditions P(x)σ =T P(xσ). Such
conditions occur at lines 2 and 9-13 of Table 1.

The most significant rules for this paper are those for the replicated parallel
operators: rows 9-11 in the table. This is because structured machines with these
operators have effective state spaces with states being tuples of local states, one
per child machine. Sections 6 and 7 will define rep functions on such tuple states.

An alternative, promising approach to finding permutation transparencies
(and so symmetries) is to look for data independence (d.i.) [11] of a parametrized
process expression P(x) in the type X , say, of its parameter. This is because d.i.
– a simple syntactic property – implies transparency with respect to all permuta-
tions of the type. It appears possible to liberalise the notion of data independence
to yield a syntactic characterisation of a large class of transparent processes: one
would remove conditions (notably banning of parallel composition indexed by
the d.i. type) designed to prevent d.i. processes ‘counting’ the datatype. Once
one has identified transparency syntactically – using standard d.i. or a liberalised
version – one could deduce symmetries using the rules above. This is motivated
further in [5], in particular for d.i. index sets.

The algebraic rules in Table 1 can be extended to yield a compiled represen-
tation of the process as a structured machine, plus permutation bisimulation
relations on the nodes of its leaf LTSs (not merely knowledge of whether the
process is symmetric). Such permutation bisimulations will justify the rep func-
tions defined in the next sections.

A Representative Function Approach to Symmetry Exploitation 267

6 Basic Symmetry Exploiting Algorithm

Recall that symmetry of a CTL* formula f w.r.t. group G means that f never
discriminates between mutually symmetric behaviours, regardless of the number
of steps already taken. The corresponding condition on a specification process
is that it is G-symmetric in each state (each process to which it can evolve
is G-symmetric); if this holds we say the specification process is universally
G-symmetric. A specification transition system (LTS or structured machine) is
universally G-symmetric if each of its states (LTS nodes or tuples of nodes) is
G-symmetric, implying universal G-symmetry of the represented process.

The product space for a specification Spec with states SSpec and an implemen-
tation Impl with states SImpl is the subspace of SSpec × SImpl reachable under
lock-step synchronisation on all visible events. This state space is explored during
a standard refinement check; each ‘state’ of the product space is really a state
pair (u, v), say, where u is a specification state and v is an implementation
state. A path through a transition system is an alternating sequence 〈s0, e1, s1,
. . . , en , sn〉 of states and events, starting and ending with states such that for
each 0 � i < n, there is a transition from si to si+1 labelled ei+1.

A twisted path through a Spec-Impl product space is a sequence 〈s0, e1, σ1, s1,
. . . , en , σn , sn〉 of (product) states, events and permutations, starting and ending
with states, with the following well formedness condition between successive
states: ∀ 0 � i < n, there is a product space transition labelled ei+1 from si
= (ui , vi) to pre-si+1 ≡ si+1σ

−1
i+1 = (ui+1σ

−1
i+1, vi+1σ

−1
i+1). Intuitively, non-trivial

permutations σ ‘twist’ the search away from paths the usual refinement checking
algorithm would follow.

Given a function repPair from state pairs to state pairs, a repPair -twisted
path is a twisted path 〈s0, e1, σ1, s1, . . . , en , σn , sn〉 such that ∀ 0 < i � n, si =
repPair(pre-si), where pre-si ≡ siσ−1

i . (We let repPair return a permutation too,
which this definition ignores.)

6.1 TwistedCheck

The symmetry exploiting algorithms will be defined in terms of a curried func-
tion TwistedCheck (see Figure 3) parametrized by a function repPair . Ignoring
counterexample recovery for the moment, TwistedCheck(repPair) differs from
the usual refinement checking algorithm (Section 2.3) as follows: during explo-
ration, instead of recording a reached state pair (u, v), record (repu , repv) where
(repu , repv , σ) = repPair(u, v). Note that TwistedCheck(repPair) does not need
Spec or Impl G-symmetry.

TwistedCheck(repPair) explores the Spec-Impl product space by following
repPair -twisted paths – each non-trivial permutation σ returned by repPair re-
directs the search to continue from (repnext_u,repnext_v) instead of from
(next_u,next_v). Each such σ is recorded for counterexample recovery.

A bad state pair, and a bad event from that pair, are a pair (u, v) and event
e where Impl state v has an outward transition labelled e but Spec state u does
not. We generalise the notion of bad event: a bad trace from a bad state pair
(u, v) is a trace t such that Impl state v can perform t but Spec state u cannot.

268 N. Moffat, M. Goldsmith, and B. Roscoe

TwistedCheck(repPair)(TSpec,TImpl)
1 Input: Normal Spec transition system TSpec with states SSpec
2 Impl structured machine TImpl with states SImpl
3 repPair: SSpec x SImpl -> SSpec x SImpl x G

4 Output: A repPair-twisted counterexample or ‘REFINES’

5

6 function recover2(state,vparent,e,π)
7 if defined(vparent) then
8 (u,v,vparent2,e2,σ) := Seen[vparent];

9 return recover2(v,vparent2,e2,σπ)^<eπ>;
10 else
11 return <>;

12 endif
13 end
14

15 Seen := {(init(TSpec),init(TImpl),undef,undef,1)}; Done := {};
16

17 while Seen - Done is not empty do
18 Choose some (u,v,vparent,event,π) from Seen-Done;

19 if v is compatible with u then
20 foreach transition (v,e_v,next_v) in TImpl do
21 e_u := e_v;

22 Let next_u be unique such that (u,e_u,next_u) ∈ TSpec;

23 (repnext_u,repnext_v,σ) := repPair(next_u,next_v);

24 Put (repnext_u,repnext_v,v,e_v,σ) in Seen if
25 no tuple in Seen has same first two values;

26 endfor
27 else
28 bad := an event possible for v but not for u;

29 print recover2(v,vparent,event,π)^bad; abort;
30 endif
31 Done := union(Done,(u,v,vparent,event,π));
32 endwhile
33

34 print ‘REFINES’;

Fig. 3. Twisted refinement checking algorithm for traces refinement. Underlining shows
the differences compared with the usual refinement checking algorithm.

A counterexample trace is a trace to a bad state pair, extended by a bad trace
from that pair. It is easy to see that the counterexample traces are exactly the
Impl traces that are not Spec traces.

Define recover(〈path〉) and recover2(〈repPair -twisted path〉) as follows:

recover(〈s0, e1, s1, . . . , en , sn〉) = 〈e1, . . . , en〉
recover2(〈s0, e1, σ1, s1, . . . , en , σn , sn〉) = 〈e1σ1σ2 . . . σn , . . . , enσn〉

So recover(p) is the trace of events along path p, and recover2 also yields a
trace. Let a repPair trace to state pair s be the result of applying recover2 to a
repPair -twisted path r to s .

A Representative Function Approach to Symmetry Exploitation 269

A repPair counterexample trace is then a repPair trace to a bad state pair,
extended by a bad trace from that pair. Examination of Figure 3 shows that on
reaching a bad pair (u, v) the line 19 condition fails and TwistedCheck(repPair)
effectively applies recover2 to a repPair -twisted path to (u, v), extends the result
by a bad event, and so obtains a repPair counterexample trace.

6.2 SymCheck1

Suppose a function rep maps each implementation state v to a representative
in the G-equivalence class of v , for some event permutation group G. Define
SymCheck1 to be TwistedCheck(repPair1) where repPair1 is defined in terms
of a function sortRep:

repPair1(u, v) = (u, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = sortRep

SymCheck1 explores the Spec-Impl product space by following repPair1-twisted
paths. Recall that universal G-symmetry of a specification transition system
TSpec means that each state u of TSpec is G-symmetric, i.e. each u is such
that uσ = u for all σ in G. So, for state u of TSpec and state v of TImpl ,
repPair1 maps state pair (u, v) to (u, rep(v), σ) [for some σ in G s.t. vσ = rep(v)]
= (uσ, vσ, σ) [using universal G-symmetry of TSpec and that vσ = rep(v)] =
(uσu,v , vσu,v , σu,v) for σu,v = σ. The significance of this is that Theorem 2,
proved in the appendix, applies:

Theorem 2. Let G be a group of event permutations and suppose Spec and
Impl have G-symmetric transition systems TSpec and TImpl respectively. Suppose
function repPair maps each state pair (u, v) to (uσu,v , vσu,v , σu,v) for some σu,v

in G. Then Spec �T Impl has a counterexample trace t iff Spec �T Impl has a
repPair counterexample trace t.

So, SymCheck1 eventually finds a repPair counterexample trace exactly when
the refinement does not hold, and this will be a counterexample trace. If the
exploration order is breadth-first, the counterexample found will clearly have
minimal length.

6.3 Method sortrep

It remains to define a suitable function rep that maps each implementation state
v to some G-equivalent representative. Given a group G, an implementation
structured machine TImpl with n leaves and a state v = (v1, . . . , vn) of TImpl ,
we describe a method of calculating a representative rep(v) and a permutation σ
in G such that vσ = rep(v). This method and an alternative defined later both
rely on knowledge of the permutation bisimulations between the nodes of TImpl

and in particular the σ-bisimulations for σ in G. The method sortRep is fast
but, as discussed below, it needs all pbisims to have a simple form. Furthermore,
G must be a full symmetry group.

270 N. Moffat, M. Goldsmith, and B. Roscoe

Suppose process P is a parallel composition, by some parallel operator op,
of n > 1 processes P(id1), . . . ,P(idn) represented by LTSs L(1), . . . ,L(n). Then
P can be represented by a structured machine S having a simple form if op
is interleaving, generalised parallel on some shared G-symmetric alphabet A,
or alphabetised parallel on G-transparent alphabets (so each process P(id) is
synchronised with the others on an alphabet A(id), where A(idσ) = A(id)σ for
each σ in G). In such cases, P is representable by structured machine S having
top level operator op and children L(1), . . . ,L(n). As stated earlier, Figure 2
gives an example for Towers of Hanoi with 3 poles and 2 discs.

A pbisim pσ that relates leaf nodes of a structured machine is a simple swap
pbisim for leaf indices i and j if pσ relates each i :m (shorthand for a node m
of LTS i) to j :m, each j :m to i :m and, for k �∈ {i , j}, each k :m to k :m. For
example, the (B C)-bisimulation depicted in Figure 2 is a simple swap pbisim
for leaves 2 and 3.

Consider arbitrary state v = (v1, . . . , vn) of such a structured machine S
having simple swap σ-bisimulation pi,j for i < j . Then applying pi,j to v has
the effect of swapping the values at indices i and j of v , and not changing other
values, to yield the state v ′ = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi , vj+1, . . . , vn).
By the generalised form of rule 9, 10, or 11 of Table 1 (depending on the operator
op), state v is σ-bisimilar to v ′ since each component of v is σ-bisimilar to a
component of v ′. In the case of Figure 2, each structured machine state (x , y, z),
for some local states x , y and z of the respective leaf LTSs, is related by the
depicted pbisim to (x , z , y).

Suppose PBISIMS is a set of simple swap pbisims for a structured machine
having n leaves, and suppose SUB is a subset of {1, . . . ,n}. Then PBISIMS is a
full set of simple swap pbisims for SUB if for each i , j ∈ SUB there is a simple
swap pbisim pσ ∈ PBISIMS for i and j , with pσ a σ-bisimulation relation. Let
G be the group generated by such permutations σ. Then any permutation of
component states vi of v = (v1, . . . , vn) with indices in SUB yields a G-bisimilar
state because each such permutation is the composition of a sequence of transpo-
sitions, each of which maps to a G-bisimilar state. The method sortRep, for such
a set SUB , sorts the components of a state v = (v1, . . . , vn) that have indices
in SUB and leaves the others unchanged; the resulting state is G-bisimilar to v
due to the above reasoning.

There is scope for defining variants of this method that apply to more pro-
cesses. In particular, it would be straightforward to cope with structured ma-
chines whose pbisims correspond to multiple simultaneous index swaps – such
as (1 2)(5 6). One could still use a fast sort-based method: sort a subset of the
local state values (say, v1 and v2) and apply a corresponding permutation to the
other values (v5 and v6 in this example).

7 Extensions

Two extended algorithms are described. SymCheck2 uses a more general rep
function that applies to a larger class of implementation processes than does

A Representative Function Approach to Symmetry Exploitation 271

sortRep. SymCheck3 is more general still, requiring only G-symmetry of the
Spec transition system instead of universal G-symmetry.

7.1 SymCheck2

Define SymCheck2 to be TwistedCheck(repPair2), where repPair2 uses a more
general rep function:

repPair2(u, v) = (u, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = genRep

SymCheck2 explores the Spec-Impl product space by following repPair2-twisted
paths. Compared to SymCheck1, SymCheck2 uses genRep (defined below) in
place of sortRep. Similarly to SymCheck1, Theorem 2 justifies use of Sym-
Check2 to find counterexamples when the Spec transition system is universally
G-symmetric and the Impl transition system is G-symmetric. Both SymCheck1
and SymCheck2 require universal G-symmetry of Spec to ensure that Theorem 2
applies. The practical difference is that SymCheck2 is less restrictive than Sym-
Check1 about the form of the Impl transition system and its known permutation
bisimulations.

Method genRep. As already mentioned, this method is more general than
sortRep. It works with any set of Impl permutation bisimulations such that, for
each leaf index i , each pbisim p relates all nodes of LTS (i) to nodes of a distinct
LTS (j), and each such LTS (j) node is the image of some LTS (i) node by p,
where j depends on the pbisim (and could be the same as i). That is, we require
each pbisim p to be the union of bijections {p1, . . . , pn} with each pi having
domain the nodes of LTS (i) and range the nodes of some distinct LTS (j). We
call such pbisims uniform. (Uniformity is a natural condition, indeed all pbisims
calculated using our extended Table 1 rules are uniform, and composition of
pbisims preserves uniformity.)

The method genRep calculates each state (v ′
1, . . . , v

′
n) to which v = (v1, . . . ,

vn) is related by some pbisim, using pre-calculated pbisims between nodes of the
LTSs. It chooses the lexicographically least.

We explain how to calculate a node v ′ = (v ′
1, . . . , v

′
n) to which v is related, as

determined by a particular σ-bisimulation p. The value v ′
j at position j of tuple

v ′ is determined as follows: find the leaf number, i , of the Impl leaf LTS such
that p relates LTS (i) nodes to LTS (j) nodes, and set v ′

j to the node of LTS(j) to
which node vi of LTS (i) is related by p. Now, v represents Pv1 ‖ . . . ‖ Pvn where
each Pvi is the process represented by node vi of LTS (i), and by construction
each Pvi is such that Pvi = Pv ′

j σ, for some distinct index j (by uniformity of
p). So, Pv1 ‖ . . . ‖ Pvn = Pv ′

1σ ‖ . . . ‖ Pv ′
nσ = (Pv ′

1 ‖ . . . ‖ Pv ′
n)σ and hence

Pv = Pv ′σ.
For improved efficiency, our implementation pre-calculates, for each pbisim,

the appropriate ordering of indices i to calculate the components of v ′ in left-
to-right order. It abandons calculation of v ′ when a component v ′

j is calculated
that makes the partial v ′ larger than the lex-least thus far.

272 N. Moffat, M. Goldsmith, and B. Roscoe

When using genRep, before exploration we transitively close the calculated
pbisims in the obvious sense. So it suffices to find just a generating set of pbisims
(i.e., pbisims for a generating set of permutations of G) using the rules in Table 1
or an extended table. Transitive closure is not used for sortRep since sortRep does
not generate all related nodes – even partially – and can in fact be determined
applicable given a small number of suitable generating pbisims.

7.2 SymCheck3

Define SymCheck3 to be TwistedCheck(repPair3) where:

repPair3(u, v) = (uσ, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = genRep

So SymCheck3 explores the Spec-Impl product space by following repPair3-
twisted paths. Theorem 2 applies directly to SymCheck3 when the Spec and
Impl transition systems are each G-symmetric. We drop the condition (which
was needed for SymCheck1 and SymCheck2) that the Spec transition system
TSpec is universally G-symmetric – this condition is not needed here because
repPair3 yields uσ in the first part of its result, exactly as needed for Theorem 2
to apply. Hence this algorithm is more general than SymCheck2; the price paid
for this extra generality is the need to calculate uσ, but this is straightforward
given pbisims for TSpec . Note that it would not be appropriate to use rep(u)
instead of uσ in the definition of repPair3, as these will be different in general.

8 Experimental Results

We present results obtained using a prototype tool written in Perl. The tool
compiles given Spec and Impl processes, checks particular symmetries of them
claimed by the user and in so doing finds corresponding pbisims. It then checks
applicability of, and runs, refinement checking algorithms requested by the user.
The results presented are for the usual refinement checking algorithm (called
Check here) and for algorithms SymCheck1, SymCheck2 and SymCheck3.

Specification processes were chosen that are refined by the implementations,
to show the full (product) state space sizes. Three classes of refinement check
are reported, distinguished by the choice of specification and implementation:

– Refinement of RUN(Events) by Towers of Hanoi models with 4 discs and 4-7
poles, where RUN(Events) can always perform any event;

– Refinement of RUN({| try, enter , leave |}), which can perform all events on
channels try, enter and leave, by Dijkstra mutual exclusion algorithm models
with 2-4 participants; and

– Refinement of SpecME by these Dijkstra models, where SpecME can perform
exactly the desired patterns of try.i , enter .i and leave.i events and is not
universally symmetric for any non-trivial permutation.

A Representative Function Approach to Symmetry Exploitation 273

Table 2. Experimental results for the usual refinement checking algorithm Check and
the three SymCheck algorithms

Algorithm Spec Impl States

Time (secs)

Exploration

Check

RU
N

{|
Ev

en
ts

 |}

hanoi4p4d 256 100% 3.34 0.20 - 3.58 100% - 0%
SymCheck1 hanoi4p4d 51 19.92% 3.34 0.20 - 0.73 20% 6 2%
SymCheck2 hanoi4p4d 51 19.92% 3.34 0.20 0.01 0.73 20% 6 2%

Check hanoi5p4d 625 100% 5.13 0.37 - 19.14 100% - 0%
SymCheck1 hanoi5p4d 52 8.32% 5.13 0.37 - 1.53 8% 24 -4%
SymCheck2 hanoi5p4d 52 8.32% 5.13 0.37 0.05 1.72 9% 24 8%

Check hanoi6p4d 1296 100% 7.38 0.78 - 82.29 100% - 0%
SymCheck1 hanoi6p4d 52 4.01% 7.38 0.78 - 3.11 4% 120 -6%
SymCheck2 hanoi6p4d 52 4.01% 7.38 0.78 0.56 4.20 5% 120 27%

Check hanoi7p4d 2401 100% 9.88 3.78 - 246.83 100% - 0%
SymCheck1 hanoi7p4d 52 2.17% 9.88 3.78 - 5.09 2% 720 -5%
SymCheck2 hanoi7p4d 52 2.17% 9.88 3.78 5.69 15.38 6% 720 188%

Check DijkstraME_2 445 100% 4.18 0.53 - 0.16 100% - 0%
SymCheck2 DijkstraME_2 224 50.34% 4.18 0.53 0.00 0.11 69% 2 37%

Check DijkstraME_3 19161 100% 22.66 2.65 - 11.77 100% - 0%
SymCheck2 DijkstraME_3 3269 17.06% 22.66 2.65 0.01 2.94 25% 6 46%

Check DijkstraME_4 1189379 100% 63.89 10.02 - 1103.00 100% - 0%
SymCheck2 DijkstraME_4 51571 4.34% 63.89 10.02 0.07 118.95 11% 24 149%

Check

Sp
ec

M
E

DijkstraME_2 445 100% 4.08 0.52 - 0.13 100% - 0%
SymCheck3 DijkstraME_2 224 50.34% 4.08 0.52 0.00 0.12 92% 2 83%

Check DijkstraME_3 19161 100% 22.77 2.66 - 8.82 100% - 0%
SymCheck3 DijkstraME_3 3269 17.06% 22.77 2.66 0.01 2.96 34% 6 97%

Check DijkstraME_4 1189379 100% 63.57 10.00 - 861.12 100% - 0%
SymCheck3 DijkstraME_4 51571 4.34% 63.57 10.00 0.07 133.88 16% 24 259%

Number of
perm syms

found

Overhead
per state
explored

Impl
compilation

+ sym
checking

Impl super-
compilation

Impl pbisim
transitive
closure

RU
N

({|
try

,e
nt

er
,le

av
e|

}

Table 2 shows the results obtained for the most efficient of the applicable sym-
metry exploiting algorithms. For each check, G is the full symmetry group on
pole indices (except pole A, where all discs start) or participant identifiers.

In each case the applicable SymCheck algorithms can be determined auto-
matically based on whether there is found to be a full set of simple swap pbisims
(in which case sortRep can be used) and whether the specification process LTS
is found to be universally G-symmetric (in which case SymCheck2 applies, and
so does SymCheck1 if sortRep can be used).

One column gives total time for compilation of the implementation process to
a structured machine plus checking of the claimed implementation symmetries.
Others give supercompilation time,3 and time for transitive closure of imple-
mentation transition system pbisims (i.e., for determining an implementation
transition system pbisim for each permutation in G, which is needed for genRep
and so for SymCheck2 and SymCheck3). Corresponding timings are omitted for
the specification as they are much smaller. Exploration times are reported.

Although the table does not show it, SymCheck3 has a larger overhead per
state explored than does SymCheck2. The table does however include evidence
that SymCheck2 has a larger overhead than SymCheck1.
3 Supercompilation [6] can reduce exploration times greatly, but is outside the scope

of this paper.

274 N. Moffat, M. Goldsmith, and B. Roscoe

The Towers of Hanoi models are very simple. Each has a structured machine
with a full set of simple swap pbisims for G. Also, the specification RUN(Events)
is universally G-symmetric. These properties are determined quickly by the tool
and hence SymCheck1 is found to apply. Compared with Check, there is a sub-
stantial reduction in the number of state pairs explored by SymCheck1 and in
exploration time. Although the compilation effort is larger, the extra costs are
evidently small compared to the benefits of exploring fewer state pairs.

The Dijkstra mutual exclusion models were chosen in part because their
structured machines (not shown) happen not to have simple swap pbisims for
the permutations in the corresponding group G. Accordingly, SymCheck1 does
not apply to these models. In contrast, SymCheck2 does apply when check-
ing refinement of RUN({| try, enter , leave |}), as this specification is univerally
G-symmetric. However, SymCheck2 does not apply with the just G-symmetric
specification SpecME; only SymCheck3 applies with this refinement property.

For the larger symmetry groups, algorithms SymCheck2 and SymCheck3 suf-
fer from the rapid increases in the size of G that result from increasing the
number of poles or participants; this is because both algorithms use genRep,
which needs a pbisim for each element of G. SymCheck1 is much less sensitive
to this because it uses sortRep, which only requires existence of a linear number
of (simple swap) pbisims. Furthermore, confirmation that these pbisims exist can
be performed efficiently by checking existence of two pbisims that correspond to
any transposition (x y) and any cycle on all elements of G except for x . This
method was used in our implementation of SymCheck1.

9 Conclusions

We have successfully adapted the representative function symmetry exploitation
approach from the temporal logic model checking context to CSP refinement
checking. The major obstacle was the need for access to sufficient local informa-
tion about state during refinement checking, which is provided by representing
the implementation process as a structured machine. We have also presented two
generalisations of the basic algorithm. All three algorithms have been presented
in a common style, in terms of a curried function TwistedCheck.

An option for future work is to characterise more precisely, in terms of pro-
cesses, when alternative SymCheck variants apply and perhaps develop methods
for transforming CSP models, or their transition systems, to make the more
efficient algorithms more widely applicable.

There are many other possible extensions, including: use of (a perhaps lib-
eralized notion of) data independence to increase the efficiency of symmetry
identification; development of variants of the sortRep function to cope efficiently
with wider classes of structured machines and permutation bisimulations over
them (and hence more implementation processes); extension to multiple repre-
sentatives; extension to virtual symmetries [12]; and use of computational group
theory to improve efficiency.

A Representative Function Approach to Symmetry Exploitation 275

It would also be interesting to investigate the temporal logic analogue of
(non-universal) G-symmetry and perhaps generalise the representative function
approach to symmetry exploitation for temporal logic model checking, effectively
removing the requirement that the specification is always symmetric.

The experimental results are encouraging. They illustrate that the refinement
checking algorithms presented can give significant savings in the number of state
pairs explored and in verification time. The former can be expected to lead to
corresponding reductions in memory usage, which is often the dominant factor
determining the sizes of problems that can be checked.

Acknowledgements

We are grateful to the reviewers for their valuable comments.

References

1. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in Temporal Logic Model
Checking. ACM Comput. Surv. 38(3) (2006)

2. Hoare, C.A.R.: Communicating Sequential Processes. CACM, 21(8) (1978)
3. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1998)
4. Formal Systems (Europe) Ltd: Failures-Divergences Refinement: FDR2 User Man-

ual (1992-2008)
5. Moffat, N., Goldsmith, M., Roscoe, A.W.: Towards Symmetry Aware Refinement

Checking (Extended Abstract). In: Proceedings of International Symmetry Con-
ference, Edinburgh, UK (2007)

6. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, A.W.: Modelling and
Analysis of Security Protocols. Addison-Wesley, Reading (2001)

7. Park, D.M.: Concurrency on automata and infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104. Springer, Heidelberg (1981)

8. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs
(1989)

9. Clarke, E., Enders, R., Filkhorn, T., Jha, S.: Exploiting Symmetry in Temporal
Logic Model Checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

10. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in
System Design 9(12), 105–131 (1996)

11. Lazić, R.S.: A semantic study of data-independence with applications to the me-
chanical verification of concurrent systems. Ph.D. thesis, Oxford University Com-
puting Laboratory (1999)

12. Emerson, E.A., Havlicek, J., Trefler, R.: Virtual Symmetry Reduction. In: Pro-
ceedings of the 15th IEEE Symposium on Logic in Computer Science (2000)

Appendix: Theory

Lemma 1. Let G be a group of event permutations. Consider the product space
for particular Spec and Impl transition systems, with initial state pair s0 =

276 N. Moffat, M. Goldsmith, and B. Roscoe

(u0, v0). Suppose repPair is a function that maps each state pair (u, v) to (uσu,v ,
vσu,v , σu,v), some σu,v in G. Then, for all traces t, there is a path p from s0
to state pair s = (u, v), with recover(p) = t iff there is a repPair-twisted path r
from s0 to sσ = (uσ, vσ), with recover2(r) = tσ, some σ in G.

Proof. Induction on length k of t.
Base case: k = 0, so t = 〈〉. There is exactly one path, p = 〈s0〉, starting at s0
and such that recover(p) = 〈〉. This path ends at (u, v) = (u0, v0) = s0. Also,
there is exactly one repPair -twisted path, r = 〈s0〉, starting at s0 and such that
recover2(r) = 〈〉. This repPair -twisted path ends at s0 = s01 so we may choose
σ = 1. Then recover2(r) = 〈〉 = 〈〉σ.

Inductive step: Suppose the lemma holds for all traces t of some length k . We
show it also holds for all t of length k + 1.
(⇒) Suppose p = p′�〈e〉 is a length-k+1 path from s0 to (u, v) and recover(p) =
t . Then p′ is a length-k path to some state pair (u ′, v ′) and there is a transition
(u ′, v ′) e→ (u, v). Clearly, recover(p) = recover(p′�〈e〉) = recover(p′)�〈e〉. So,
defining t ′ = recover(p′), we have t = t ′�〈e〉. By the induction hypothesis
applied to p′ and t ′, there is a repPair -twisted path r ′ from s0 to (u ′σ′, v ′σ′)
with recover2(r ′) = t ′σ′, some σ′ in G. Recall there is a transition (u ′, v ′) e→
(u, v), so there is a transition (u ′σ′, v ′σ′) eσ′

→ (uσ′, vσ′). Let ρ in G be such
that repPair(uσ′, vσ′) = (uσ′ρ, vσ′ρ, ρ).4 Then r = r ′�〈eσ′, ρ, (uσ′ρ, vσ′ρ)〉 is
a repPair -twisted path to (uσ′ρ, vσ′ρ) since r ′ is repPair -twisted and ends at

(u ′σ′, v ′σ′) and there is a transition (u ′σ′, v ′σ′) eσ′
→ (uσ′, vσ′) and repPair(uσ′,

vσ′) = (uσ′ρ, vσ′ρ, ρ). Putting σ = σ′ρ, we obtain that r is a repPair -twisted
path from s0 to sσ = (uσ, vσ), where σ = σ′ρ is in G since both σ′ and ρ are. It
remains to show that recover2(r) = tσ. We have recover2(r) = recover2(r ′�〈eσ′,
ρ, (uσ′ρ, vσ′ρ)〉) = (recover2(r ′)�〈eσ′〉)ρ = (t ′σ′�〈eσ′〉)ρ = (t ′�〈e〉)σ′ρ = tσ.
(⇐) Similar.

Theorem 1. Let G be a group of event permutations and suppose Spec and Impl
have transition systems TSpec and TImpl respectively. Suppose function repPair
maps each state pair (u, v) to (uσu,v , vσu,v , σu,v) for some σu,v in G. Then
Spec �T Impl has a counterexample trace t iff ∃σ ∈ G s.t. Spec �T Impl has a
repPair counterexample trace tσ.

Proof. (⇒) Let t be a counterexample trace of Spec �T Impl . Then t is a trace
of Impl . Let t1 be the longest prefix of t that is a trace of Spec and t2 be such
that t = t�

1 t2. Then there is a path p from initial state pair s0 to s = (u, v),
say, with recover(p) = t1 and t2 a bad trace from (u, v). By Lemma 1, there is
a repPair -twisted path r from s0 to sσ, some σ in G, with recover2(r) = t1σ.
But sσ = (uσ, vσ) is a bad state pair, and t2σ must be a bad trace from sσ
(since Impl state vσ is able to perform trace t2σ but Spec state uσ is not). So
recover2(r)�t2σ = t1σ�t2σ = (t1�t2)σ = tσ is a repPair counterexample trace,
for this σ in G.
4 Such a ρ is denoted σuσ′,vσ′ in the statement of the lemma.

A Representative Function Approach to Symmetry Exploitation 277

(⇐) Let t be a repPair counterexample trace of Spec �T Impl . Then t =
recover2(r)�t2 for some repPair -twisted path r from initial state pair s0 to
a bad state pair s = (u, v), such that t2 is a bad trace from (u, v). So Impl state
v can perform trace t2 but Spec state u cannot. Putting t1 = recover2(r), we
have t = t1�t2. By Lemma 1, there is a path p from s0 to sσ−1, some σ−1 in G,
with recover(p) = t1σ−1. Now sσ−1 = (uσ−1, vσ−1) must be a bad state pair
with t2σ−1 a bad trace from sσ−1, since Impl state vσ−1 can perform trace t2σ−1

but Spec state uσ−1 cannot. So p is a path from s0 to bad state pair sσ−1 and
recover(p)�t2σ−1 = t1σ−1�t2σ−1 = (t1�t2)σ−1 = tσ−1 is a counterexample
trace, for this σ−1 in G.

Theorem 2. Let G be a group of event permutations and suppose Spec and
Impl have G-symmetric transition systems TSpec and TImpl respectively. Suppose
function repPair maps each state pair (u, v) to (uσu,v , vσu,v , σu,v) for some σu,v

in G. Then Spec �T Impl has a counterexample trace t iff Spec �T Impl has a
repPair counterexample trace t.

Proof. By Theorem 1, Spec �T Impl has a counterexample trace t iff ∃σ ∈ G
s.t. Spec �T Impl has a repPair counterexample trace tσ. Then use that, ∀σ
in G, Spec �T Impl has a counterexample trace t iff it has a counterexample
trace tσ (which follows easily from G-symmetry of the Spec and Impl transition
systems).

Probing the Depths of CSP-M:

A New fdr-Compliant Validation Tool

Michael Leuschel and Marc Fontaine

Institut für Informatik, Universität Düsseldorf�

Universitätsstr. 1, D-40225 Düsseldorf
{leuschel,fontaine}@cs.uni-duesseldorf.de

Abstract. We present a new animation and model checking tool for
CSP. The tool covers the CSP-M language, as supported by existing
tools such as fdr and probe. Compared to those tools, it provides
visual feedback in the source code, has an LTL model checker and can
be used for combined CSP ‖ B specifications. During the development of
the tool some intricate issues were uncovered with the CSP-M language.
We discuss those issues, and provide suggestions for improvement. We
also explain how we have ensured conformance with fdr, by using fdr
itself to validate our tool’s output. We also provide empirical evidence
on the performance of our tool compared to fdr, showing that it can be
used on industrial-strength specifications.

Keywords: CSP, Tool Support, Model Checking, Animation, B-
Method, Integrated Formal Methods, Specification Language Design,
Logic Programming.

1 Introduction

CSP and B can be effectively used together in a complementary way to formally
specify systems [29,3,5]. B can be used to specify abstract state and can be used
to specify operations of a system in terms of their enabling conditions and effect
on the abstract state. CSP can be used to give an overall specification of the
coordination of operations.

The overall goal of this research project was to obtain an animation and
model checking tool which could be used to validate such combined B and CSP
specifications. A major requirement was that this tool should deal with full
B specifications in AMN (abstract machine notation) as well as with full CSP
specifications in CSP-M (machine readable CSP), so that existing industrial tools
such as Atelier B [28] or fdr [7], could be applied to validate the individual B
or CSP specifications in isolation.

� A substantial part of this research has been sponsored by AWE, plc within the
project “ProCSB” as well as by the EU funded FP7 project 214158: DEPLOY (In-
dustrial deployment of advanced system engineering methods for high productivity
and dependability).

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 278–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 279

After previous attempts with other tools,1 in this project it was decided to
extend the ProB tool [16], in order to deal with CSP-M specifications. Indeed,
ProB already deals with full AMN and provides both animation and model
checking facilities. ProB can also be applied with reasonable effort to new spec-
ification languages, provided a Prolog interpreter for that language is available.
In earlier work, ProB was already extended to validate combined B and CSP
specifications [5]. However, this work was based on the earlier interpreter [15],
which only treats a very small subset of CSP-M (e.g., there are no replicated op-
erators, no channel declarations, no let declarations or lambda constructs, etc.),
and used its own incompatible syntax (which was designed at the time to enable
easier parsing by Prolog). In other words, the previous tool was an academic
prototype;2 what is required is a new tool which can handle existing real-life
CSP-M specifications.

A major hurdle of this research project was the development of a new parser
and interpreter for full CSP-M for use within ProB. The issue of synchronising
the B interpreter with the CSP interpreter is mainly achieved in the same manner
— via Prolog unification — as in the earlier work [5]. Hence, in the rest of this
paper, we will only briefly discuss the issue of synchronising the B interpreter
with the CSP interpreter and concentrate on presenting the new CSP-M parser,
type checker, and interpreter. This is also warranted, since we have actually also
gained a new powerful tool to animate and model check CSP-M specifications.
This tool overcomes some of the drawbacks of existing tools fdr and probe,
and adds several new features:

– precise syntax error highlighting in the source code
– precise semantic error highlighting in the source code
– visual feedback on complicated events in the source code
– the ability to deal with infinite state sub-processes and to some extent also

main processes
– graphical visualisation of the state space of CSP-M specifications
– the ability to apply LTL model checking to CSP-M [20]
– a new type checker for CSP-M [6]
– a web-interface using Google-Web-Toolkit (www.myprob.de)

In the remainder of this paper you will find various critiques of CSP-M, and also
of fdr and probe. To clarify our position, we believe that fdr and probe are
two very useful tools, and that CSP-M is a very attractive specification language.
There are also aspects of CSP that are dealt with much better by fdr and probe,
than by our tool (e.g., deeply nested processes or compression [25]). Exactly be-
cause we believe that CSP-M and the existing tools are relevant, are we interested
1 E.g., combining the commercial BToolkit animator from BCore with the com-

mercial probe animator [8] from Formal Systems Ltd. in the EPSRC funded
project GR/R96859/01 “Verification and Development of Interacting Software
Components”.

2 Indeed, our new interpreter alone is roughly six times the size of the interpreter
in [5].

280 M. Leuschel and M. Fontaine

in improving and clarifying the language. We hope that we have provided insights
and a new tool of value to the formal engineering methods community beyond
CSP ‖ B.

Outline. We start off be outlining the difficulties of treating CSP-M in Sec-
tion 2, also pinpointing some semantic issues of the language, such as lack of
substitutivity of equals. We describe our Prolog interpreter in more detail in
Section 3 and the new parser in Section 4. In Section 5 we discuss how we have
ensured compliance of our tool with the existing CSP-M tools. In Section 6 we
present empirical results of using our new tool. We conclude with discussions
and more related work in Section 7.

2 Challenges of Validating CSP-M

While core CSP [10] is a relatively succinct language, full CSP-M as supported
by fdr is a very extensive and expressive specification language. Some of the
aspects that make CSP-M a challenging target for a formal validation tool are:

– CSP-M is a dynamically typed language.
– CSP-M comprises a higher-order functional programming language.
– CSP-M contains an extensive range of datatypes: booleans, integers, tuples,

associative tuples, sequences, sets, and combinations thereof. The use of an
associative datatype is rather unique, and enables some elegant formalisa-
tions. On the other hand it considerably complicates the life of the tool
developer, as we show below.

– CSP-M has grown and matured over a considerable period of time, and many
features were added, e.g.:
• Complex pattern matching, even allowing combinations of patterns to

be expressed using the @@ operator. One unique aspect of CSP-M is
the ability to use the concatenation operator ^ inside function patterns.
E.g., one can define a function that computes the last element of a list
by: last(s^<x>) = x (no mainstream functional or logic programming
language allows this).

• Complex channel matching with associative tuples and trailing question
marks which can match tuples of arbitrary length.

• Closure operations on partially constructed datavalues; partially con-
structed datavalues can be passed to functions.

• Nested function definitions, which can appear in many places (e.g., inside
an individual channel output expression)

The complexity of CSP-M is also reflected in its syntax, which makes parsing
surprisingly hard (see Section 4). As we will show below, some parts of CSP-
M also have an overly complicated semantics, which is furthermore formalised
neither in Roscoe’s book [24] nor in the fdr manual. We will discuss some of
the subtle, problematic points in the remainder of this section. How our imple-
mentation copes with higher-order functions and nested functions is explained
in Section 3.

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 281

Dynamic Typing. CSP-M, as accepted by fdr and probe [8], is a dynamically
typed language. Indeed, while channels must be statically typed by the user with
channel declarations, CSP-M provides no way of declaring types for functions
and variables. Moreover, the existing tools fdr and probe accept specifications
(without warning or runtime error message) in which there is no way to statically
type variables or functions, as the following example shows:

datatype COL = red | green

channel ci:{0..4}

channel cc:COL

BUF(<>) = STOP

BUF(<n,val>^s) = ci!n -> if n<2 then ci!val->BUF(s) else cc!val->BUF(s)

MAIN = BUF(<1,1,3,red,1,4>)

Here the argument to BUF is a sequence consisting of mixed integers and colours,
the type of every second item depending on the value of the preceding integer.
Hence, at least as far as the existing tools fdr and probe are concerned, CSP-M
is a dynamically typed language. This means, e.g., that an interpreter cannot
rely that operation arguments (e.g., for arithmetic operations) have the correct
type and must perform type checks at runtime.

There now is a prototype static type checker available for download from For-
mal Systems. It would reject the above specification; but it will also sometimes
reject legal specs (see further below). For critical applications, we believe that it
is good practice to write only specifications that are accepted by such a static
type checker, even if the tools fdr and probe can deal with dynamically typed
specifications. Still, in order to be compliant with these existing tools, we also
support dynamic typing, but we have also developed an (optional) static type
checker [6].

The Trouble with Tuples. Associative tuples can be constructed using the
dot (.) operator. This, however, is not the only use of the dot operator and actual
meaning depends on the context of use and on prior datatype declarations. Take,
e.g., the following CSP-M specification:

channel a,a’: {0..9}.{0..9} {- Meaning 1. -}

datatype R = r.{0..9} {- Meaning 2. -}

channel b,b’:R

MAIN = Rep1(a,a’,2.3); {- Meaning 3. -}

Rep2(b,b’,r.3) {- Meaning 4. -}

Rep1(c,c’,x) = c!x -> SKIP [| {|c|} |] c?y?z -> c’!y!z -> SKIP

Rep2(c,c’,x) = c!x -> SKIP [| {|c|} |] c?y?z -> c’!y -> SKIP

This example (which is type correct according to Formal Systems type checker)
shows that the dot has actually four different meanings:

1. Here the dot generates a cartesian product of two sets, and not a tuple
of two sets. This is made clear that if one defines T = {0..9}.{0..9} and
then tries to declare channel a,a’:T one gets the fdr error message “Value

282 M. Leuschel and M. Fontaine

{0,1,2,3,4,5,6,7,8,9}.{0,1,2,3,4,5,6,7,8,9} is not a set.” Thus, inside a channel
declaration the dot acts as a Cartesian product, and substitutivity of equals
does not hold: one cannot replace {0..9}.{0..9} by T even though they are
declared to be equal. One could hence argue that CSP-M is not referentially
transparent.

2. Here we construct a set of records. This is similar to point 1, but this time
the first argument is not a set but a constructor. This use of the dot occurs
inside a datatype declaration.

3. Here the dot operator constructs an associative tuple, which can be decon-
structed into its two constituents using the c?y?z channel prefix in Rep1.

4. In contrast to point 3, here we do not construct a tuple, but a record. The
difference becomes apparent in the channel prefix c?y?z in Rep2, where this
time y gets bound to the entire record and z is bound to the empty tuple.
Hence the output c’!y is not a type error and is accepted by fdr. Note that
calling Rep2(a,a’,2.3) would lead to a type error.3

Meanings 3. and 4. occur outside of channel and datatype declarations, and they
can be distinguished by checking whether the first component of a dot is a record
constructor declared in a datatype declaration. Also note that there is no way to
statically distinguish between case 3 and 4, as a slight adaptation of the above
example shows:

Rep3(c,c’,x1,x2) = c!x1.x2 -> SKIP [| {|c|} |] c?y?z -> c’!y!z -> SKIP

MAIN2 = Rep3(a,a’,2,3); Rep3(b,b’,r,3)

This time the occurrence of the dot operator inside Rep3 will, depending on its
arguments, either construct a tuple (for the call Rep3(a,a’,2,3)) or a record
(for the call Rep3(b,b’,r,3)).

We have faithfully implemented these various uses of dot, checking conformity
with fdr and probe (see Section 5). However, we believe that this aspect of
CSP-M should be simplified in future, at least using another operator for record
construction. Indeed, even to several CSP-experts (some authors of books about
CSP), the difference in behaviour between point 3 and 4 came as a surprise.
Only after experimenting with fdr and probe and discussions with Michael
Goldsmith (one of the main developers and researchers behind fdr) did we
realise that there was a subtle, but important difference between the third and
fourth use of the dot operator. We think that such semantic pitfalls should be
avoided in languages aimed at formal modelling of critical systems.

As a side-note, the empty tuple to which z is bound inside Rep2 does have
no syntactic denotation in CSP-M. We also believe that this should be remedied
in future revisions, as it prevents certain source-to-source transformations to be
applied to CSP-M specifications (e.g., constant folding cannot be applied if the
constant happens to be the empty tuple).

3 More precisely, fdr says “Mismatch calculating augment processing communication
!y near line 9 of ThreeDots.csp on channel a’ for event a’.8.9”.

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 283

Associativity of Tuples. The associativity of tuples poses some major head-
aches, both for static analysis of CSP-M specifications, as well as for animation
and model checking tools. For example, given a prefix c3!x?val!y -> ... and
a channel declaration channel c3:{0..4}.COL.{0..4} one would assume that
it is possible to statically infer the type of val to be of type COL. As the following
example shows, this is not the case:

datatype COL = red | green

channel a:{0..4}

channel c3:{0..4}.COL.{0..4}

MAIN = a?x?e -> if x<2 then P(x.red,e) else P(x,x)

P(x,y) = c3!x?val!y -> STOP -- here val can be either Int or COL

Let us examine the MAIN process after a?x?e: the variable x will contain a number
between 0 and 4 and e will always contain the empty tuple. If the number is
smaller than 2, val inside the P process will be of type integer and not of type
colour. If x is greater or equal to 2, then val will be of type COL.

This means that channel prefixing is a surprisingly complex operation in CSP-
M. In addition to mystifying users, the above also makes the life of the tool
developers much harder. For example, the result is that the Formal Systems
type checker sometimes fails to type-check a program, even if it can in principle
be statically typed. More concretely, if MAIN is replaced by MAIN = a?x?e ->
P(x.red,e) then val is always of type integer, but the type checker fails to
type-check the specification.

We also found out that in some circumstances fdr and probe did not fully
implement all consequences of the associativity of the tuples. Indeed, chang-
ing the definition of P above into the following one, leads to an “unsupported
comparison processing communication error” in both fdr and probe:

channel b:COL

P(x,y) = c3!x?val!y -> if x<2 then a!val -> STOP else b!val -> STOP

Our tool does support all of the above specifications. Still, as in the case of
the different meanings of the dot operator above, we believe that this aspect of
CSP-M should be cleaned up in future versions. The additional expressiveness
incurred by associativity and flexible channel matching is in our opinion not
sufficient to counterbalance the lack of predictability and clarity for the user.

3 The CSP-M Prolog Interpreter

In earlier work [5], synchronisation of B and CSP was achieved by

– having interpreters for B and CSP both in Prolog and
– using Prolog unification to synchronise the two interpreters.

This provided an animator and model checker for CSP ‖ B specifications.
This aproach has proven to work very well and has been kept in this project.

Figure 1 shows the general architecture of our development. The “Sync” box

284 M. Leuschel and M. Fontaine

ProB Kernel

B InterpreterCSP Interpreter

Animator

Model Checker, Refinement Checker

javacc B Parser

Prolog

Haskell
CSP Parser

Rodin Event-B
Translator

B
Machine

Event B
Model

CSP
Spec

S
y
n
c

Fig. 1. Architecture

required only relatively minor changes to the existing code base from [5]. The
CSP-Parser and Interpreter, however, have been completely re-developed. As
already mentioned, the previous parser was incompatible with fdr and the pre-
vious interpreter only supported the core CSP language, leaving many of the
difficult aspects of CSP on the side, notably the ones detailed in Section 2.
This required the development of several intricate compilation techniques and
explains the sixfold increase in code size of our new interpreter.

We describe the new parser in Section 4. The new CSP-M interpreter was in-
spired by the earlier interpreter in [5], which in turn was inspired by [15]. Just as
in [5], co-routining was used to enable us to write a compositional interpreter, and
translating the operational semantics rules of Roscoe [24]. The Prolog code imple-
ments a ternary relation cspm trans, where cspm trans(e, a, e′) means that the
CSP-M expression e can evolve into the expression e′ by performing the event a.

Why co-routining? In classical Prolog literals within a goal are selected
strictly from left to right. Co-routines (sometimes also called delay or wait dec-
larations) [22] enable a programmer to influence Prolog’s selection rule via when,
block or freeze declarations. For example, take the following two clauses, defin-
ing list membership:

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

Now take the query goal ?- member(X,L), L=[1], X=2. In classical Prolog, the
leftmost literal member(X,L) will be selected first. As member(X,L) has infinitely
many solutions, the above query will not terminate and the Prolog interpreter
will never realise that there is no solution for the query. By adding, e.g., a block
declaration :- block member(?,-). , we ensure that all calls to member will
delay until the second argument is not a variable anymore. For the above goal,
Prolog will thus suspend the call member(X,L), and execute L=[1] first. This will
awaken member(X,L), which now finds only a single solution X=1, after which
the call X=2 simply fails.

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 285

For a pure logic program, these declarations do not modify the logical mean-
ing, but they can be used to improve the runtime behaviour of the program.
In particular, one can ensure that an interpreter for CSP will terminate, or be
much more efficient, in circumstances where Prolog’s classical left-to-right selec-
tion rule would lead to non-termination or to unacceptable performance.

Take the following example (part of the regression test for our new tool):

MyInt = {0..99}

channel ch: MyInt.MyInt

channel out,out2: MyInt

T(x) = ch!x?y:{z|z<-MyInt, z<x} -> out!y -> T(y) []

ch!x?y:{z|z<-MyInt, z>=x} -> out2!y -> T(y)

S(x) = ch?y!x -> S(y)

MAIN = T(1) [| {| ch |} |] S(2)

Let us examine how the interpreter handles the synchronisation operator
[|{|ch|}|] by looking at one of the inference rules from [24]:

P
a→ P ′ Q

a→ Q′

P || XQ
a→ P ′ || XQ′

(a ∈ X)

Here P = T (1), Q = S(2) and X is the closure of ch, i.e., X = {ch.0.0, ch.0.1, . . . ,
ch.99.99}. In order to determine whether this rule is applicable, the interpreter
will first compute the outgoing transitions of T (1). One problematic issue here
is that the interpreter does not yet know the value of y and hence cannot yet
determine whether y is a member of the set comprehensions inside T ’s definition.
One solution would be to simply enumerate all possible values for y, as indicated
by the type of the channel.4 This is actually the approach employed by fdr and
probe. The drawback, however, is that a lot of effort can be wasted if the type
of the channel value is large (e.g., here T(1) has 100 possible events), and there
is no way to treat channels with unbounded types.

We have overcome this limitation by employing co-routining: basically the
value of y will be left uninstantiated (a free Prolog variable) and the member-
ship test delays until the value is known. As it is possible that some channel
fields are never given an explicit value, the interpreter is wrapped into an outer
layer which will enumerate any remaining uninstantiated channel fields at the
very end.

Several other constructs will delay until their arguments are sufficiently in-
stantiated. This has efficiency advantages, but also allows one to translate the
logical inference rules from [24] in a relatively straightforward way, without hav-
ing to worry in which order to evaluate the subexpressions nor having to perform
additional analyses. The statespace of the above specification, as computed by
our tool, is shown in the left of Fig. 2.

Here is a more realistic example with unbounded channel types. The overall
state space of MAIN is finite, and our model checker can (quickly) check the
4 In general, there can be a mixture of inputs and outputs, and information can flow

both ways.

286 M. Leuschel and M. Fontaine

start_cspm_MAIN

ch.1.2

out2.2

ch.2.1 out.1

ch.1.2

start_cspm_MAIN

a i

tick

i

b

Fig. 2. Two statespaces as displayed by ProB

entire state space. The only trace of the system is 〈out.1, out.1, out.2, out.3, out.5,
gen.5〉. Neither probe nor fdr can be used with this specification, because the
channel types are not bounded.

channel out,gen: Int

FibGen(N,M) = if M<10000 then out!M -> FibGen(M,N+M) else STOP

Take(n) = if n>1 then out?_ -> Take(n-1)

else out?x -> gen!x -> STOP

FibSeq = FibGen(0,1)

MAIN = FibGen(0,1) [| {| out |} |] Take(5)

Our tool can also deal with truly infinite state processes, in the sense that they
can be animated and partially validated. For example, our tool can find the dead-
lock in MAIN = P [| {a,b} |] Q where P = (a -> P) [[a<-b, b<- a]] and
Q = a->Q [] b->a->b->STOP after less than 0.01 s, whereas fdr goes into an
infinite loop.

Very often a natural specification style is to have sub-processes which are
infinite-state and only the global composition makes the system finite. For ex-
ample, the following is a quite natural pattern, having an infinite state server
process, but which is constrained by the environment so that the entire system
(MAIN) is finite state and can be model checked. This specification can be ex-
haustively model checked using our tool, but fdr cannot deal with it because
the tool tries to expand and normalise the infinite state Server process before
conjoining it with the User process.

ID = {0..3}

channel new, ping, ack: ID

channel shutdown

Server = new?id -> (Server ||| Serve(id)) [] shutdown -> STOP

Serve(id) = ping?id -> ack!id -> Serve(id)

User = new?i -> UserActive(i)

UserActive(i) = ping!i -> ack!i -> UserActive(i)

MAIN = Server [| {| new,ping,ack,shutdown |} |] User

Recursion and precompilation. Our tool stores the CSP-M functions in a
precompiled Prolog database of definitions. It uses the so-called non-ground rep-
resentation [9], meaning that variables in CSP-M functions are represented by

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 287

variables in the Prolog code. This enables us to use unification and Prolog argu-
ment indexing for efficient function lookup (see, e.g., the McCarthy benchmark
in Section 6).

While the non-ground representation leads to an efficient interpreter, care has
to be taken with local variables to ensure that different uses and unifications of
the same local variable do not interfere with each other. A pre-compilation phase
of our tool ensures that all local variables are pushed down into their own Prolog
clauses, so that fresh copies are obtained before every use. Take for example the
following CSP-M specification:

Repeat(X) = (X ; Repeat(X))

RepHalf = Repeat(out?x -> out!x/2 -> SKIP)

Here, the local variable x is “re-used” on every recursive call to Repeat. By gen-
erating an extra function (named here RepHalf-> 23) for the prefix construct
introducing the local variable, we ensure that every time a new copy of the local
CSP-M variable is required, a fresh Prolog variable will be generated (as the
function RepHalf-> 23 will be represented by an individual Prolog clause and
every time the clause is used, fresh copies of the local variables are produced):

Repeat(X) = (X ; Repeat(X))

RepHalf = Repeat(RepHalf->__23)

RepHalf->__23 = out?x -> out!x/2 -> SKIP

Let expressions and lambda lifting. Nested let expressions are implemented
using a static compilation technique called lambda lifting (or closure conversion)
[13] (see also Chapter 13 of [14]). The idea is that every free variable of a nested
function body is converted into an additional argument of the function, and the
local function is replaced by a renamed global function. Take for example the
following CSP-M specification:

Repeat(X) = (X ; Repeat(X))

RepCube(x) = Repeat(out!x -> (let f(m)=m*x within out!f(m*x) -> SKIP))

We generate a new global function definition for the inner function f, adding
the free variable x as extra argument of the function. The function is also given
a special name (here RepCube*f 1), to avoid name clashes with user-defined
functions and other lifted functions:

Repeat(X) = (X ; Repeat(X))

RepCube(x) = Repeat(out!x -> out! RepCube*f__1(x*x,x) -> SKIP)

RepCube*f__1(m,x) = m*x

Currying and Lambda Expressions. In addition to the standard syntax for
functions, CSP-M also allows functions to be defined in curried form. In the
following f is defined as a curried function and the MAIN0 process should output
1.2 on the out2 channel:

288 M. Leuschel and M. Fontaine

channel out2: {0..16}.{0..16}

f(x)(y) = out2!x!y -> SKIP

MAIN0 = Run(f(1))

Run(fc) = fc(2)

Curried function definitions are detected by our parser and our pre-compilation
phase translates curried functions into lambda expressions. For example, inter-
nally the above function f is represented as if it was defined by the following:

f(x) = \y @ out2!x!y -> SKIP

This of course begs the question how CSP-M lambda abstractions have been
implemented. First, the arguments of a lambda abstraction (i.e., the y in the
example above) are frozen during a pre-compilation phase to ground Prolog
terms (using the numbervars built-in, which instantiates all the free variables in
a Prolog term to ground terms of the form ’$VAR’(n), where n is a number).
When a lambda abstraction is applied, then its parameters are lifted again to
real Prolog variables, which are then unified with the actual parameter values,
after which the body of the lambda abstraction is evaluated. This scheme allows
lambda abstractions to be applied multiple times with different parameter values.

Tracking Source Code Positions. Our parser was designed from the start
to keep track of source code positions. Indeed, one aspect of fdr that can be
frustrating, is that some of the error messages contain only approximate or no
source code positions (e.g., for the error message “Function applied to a value
outside its domain”).

Our tool’s source code positions are not only used to pinpoint syntax errors,
but also to show to the user the exact location of certain “runtime” errors (e.g.,
when a process outputs a value that is outside of the channel type), as well as
give feedback on events in the animator. Indeed, when animating the user can
find out which locations in the source code contributed to a particular event (see
Figure 3). This also works for τ events. This is achieved by the parser adding
source code information inside the abstract syntax tree and by the interpreter
keeping track of all source code positions that are involved in a certain event.

4 The New Parser in Haskell

As part of this work, we also implemented a new CSP-M parser. A major change
from the existing fdr parser [26] is the incorporation of source code information
inside the abstract syntax tree. Another design goal was that the code for the
new parser should be understandable, and that it should be easy to extend and
reuse the code in future projects. The reference implementation of the CSP-
M parser [26] uses the bison parser generator, but the grammar, that actually
serves as input for bison, is itself generated with a Perl script. This however,
quite effectively obfuscates the parser and makes extending it very difficult.

Furthermore, apart from serving as input to our new CSP-M validation tool,
we are also currently adding CSP-M support to the Eclipse IDE, as well as

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 289

Fig. 3. Source code highlighting the bank model from [2] (partial view)

producing new Haskell based tools for type checking CSP-M. To allow this in-
teroperability, our parser can deliver parse-results in different output formats,
e.g., as a set Prolog facts or as a Java object representing the abstract syntax
tree. Our parser was developed with the Glasgow Haskell Compiler (GHC) and
is currently available as dynamic-link-library for four different architectures. No
knowledge of Haskell is required to use the parser.

Internally the parser is based on the Parsec combinator parser library [11].
Our practical experience, implementing a combinator parser for CSP-M in
Haskell, was overall positive. In total the parsing library contains about 4400
lines of Haskell. The specification of the CSP-M syntax is clearly separated from

290 M. Leuschel and M. Fontaine

the generation of the results (for Prolog/Java/Haskell). The performance of our
CSP-M parser is definitely sufficient for our applications. For the specification of
the alternating bit protocol (abp.csp), which is about 12KB long, the hole pro-
cess from source file to Java AST takes about 50ms on a 1.3GHz Pentium laptop.
Our parser is also capable of parsing big auto generated files. For example, we
used the parser to process a 3.5MB file which is the CSP transliteration of a large
labelled transitions system (as described in Section 5). Just parsing of this file
takes about 22 seconds. A complete run of the command-line-interface version
of the parser which includes, parsing, renaming/bound variable analysis, trans-
lation to a 19.7MB Prolog file, translation to a 9.4MB Haskell file and dumping
a lot of information to the terminal, takes about 1 minute and 40 seconds.

In retrospective, the syntax (and semantics) of CSP-M contains many awk-
ward and possibly doubtful features. For example, in CSP-M ’<’ and ’>’ are used
for arithmetic comparison as well as the beginning and end of sequences and a
parser has to deal with special cases like ’<true, 2>1, false>’, i.e. a comparison
inside a list of Boolean expressions. These features are also the reason why it is
very difficult to rigourously describe the syntax of CSP-M in terms of, i.e. a con-
text free grammar. Luckily, with the Parsec combinator parser library, it is not
important that the language one wants parse is in LL(k) or LALR(k). Infinite
lookahead is no problem and the language does not even have to be context-free.
This flexibility turned out to be invaluable for our implementation.

5 Ensuring Compliance Via Refinement Checking

To ensure that our tool is compliant with fdr we have added over 85 CSP-
M regression tests. These are a mixture of existing examples (mostly from the
books [24] and [27]) and artificially constructed, contrived specifications. For
every regression test, a test sequence has been stored and is checked.

Furthermore, unless the CSP example cannot be treated by fdr (e.g., because
of the use of an unbounded channel type), we perform a complete two way
failures-divergence refinement test using fdr. For this, we have implemented
a feature in ProB to dump the computed statespace into a CSP-M file. For
example, the statespace on the left of Figure 2 is converted into the following:5

include "ComplicatedSync.csp"

assert MAIN [FD= Nroot

assert Nroot [FD= MAIN

Nroot = ({- start_cspm_MAIN-> -} N8)

N8 = (ch.1.2->N9)

N9 = (out2.2->N10)

N10 = (ch.2.1->N11)

N11 = (out.1->N12)

N12 = (ch.1.2->N9)

5 start cspm MAIN is an artificial event of the ProB animator. Our translator auto-
matically comments those events out.

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 291

By running fdr in batch mode on this file, we perform a two way failures-
divergence refinement check between the original CSP-M specification (MAIN)
and the statespace computed by ProB (Nroot).

More precisely, if a state i in the state space has n outgoing transitions labelled
with ej �= τ leading to sj and m outgoing transitions labelled with τ leading to
tk, the process definition for i will look like this, where � is the “time-out”
operator:6

Ni = (e1 → Ns1 � . . . � en → Nsn) � (Nt1 � . . . � Ntm)

Furthermore, if any of the ej are the tick event then instead of generating ej →
Nsj we generate SKIP (note that Nsj must be a deadlocking state) and if any
of the ej are the interrupt event i then we generate STOP � Nsj .

Note that this testing was very useful in uncovering bugs as well as subtle
semantic misunderstandings on our behalf, and ensures a high-level of confor-
mance of our tool. It also caught the fact that fdr does not fully comply with
Roscoe’s operational semantics (as far as tick and Omega are concerned). In-
deed, for the following example the two-way refinement check uncovered that
fdr behaved differently from our tool (and from probe):

MAIN = a->SKIP /\ b->STOP

Our tool computes the statespace as displayed in the right of Fig. 2. The encoding
of the statespace in CSP-M is as follows:

include "TickOmegaFDRBug.csp"

Nroot = ({- start_cspm_MAIN-> -} N3)

N3 = (a->N4 [] (STOP /\ N5))

N4 = (SKIP [] (STOP /\ N5))

N5 = (b->N7)

N7 = STOP

The Nroot process does not allow the trace 〈a, tick, b〉 which fdr computes for
MAIN. The Roscoe semantics contains the following rule for the interrupt � :

P
tick→ P ′

P � Q
tick→ Ω

Hence, the sequence 〈a, tick, b〉 should not be allowed. After feedback from
Michael Goldsmith, it turns out that fdr implements an earlier semantics (it
uses P � Q

tick→ P ′ � Q), and actually behaves differently from probe in that
respect (unless the ’-no-omega’ flag is given to probe on startup).

6 Thanks to Michael Goldsmith for suggesting the use of � to convert arbitrary
ProB statespaces into CSP-M.

292 M. Leuschel and M. Fontaine

6 Empirical Evaluation

As our tool has not yet been tuned for speed, a full-scale empirical evaluation
would be premature. Still, to give an idea about the strengths of our tool, we
believe the following comparison with fdr to be useful. However, it should not
be seen as an extensive benchmarking comparison between the two tools.

The experiments were run on MacMini with 1.83 GHz Core Duo processor
running Ubuntu 7.04 with 512 MB inside of the Parallels Desktop virtualization7

environment. All experiments involved deadlock checking of the MAIN process,
and both ProB 1.2.7 and fdr 2.82 were used with default settings. Note that
fdr only displays entire seconds and 0 s thus means < 0.5 s. Also, all of the
non-zero timings of fdr were obtained using a stopwatch (as often the time
indicated by fdr was substantially below the real time needed, as part of the
precompilation time was not taken into account). The entry “**” means that
fdr stopped with the message: “readEventMap failed, failed to compile ISM”.

The alternating bit protocol is a sample file written by Roscoe, and accompany-
ingChapter 5 of [24].Another examplewe tested isCrossing, a 374 line specification
of a level-crossing gate, from the book webpage of [27]8. Bank v4 is a controller ac-
companying a B machine from [30]. Bank Secure OZ is the model of a bank with
a security automaton, translated from CSP-OZ to CSP, from [2]. This model by
Bill Roscoe describes a level crossing gate using discrete-time modelling in untimed
CSP.Peterson v1 andv2 are two versions from [27] of thePetersonmutual exclusion
algorithm. FibGen is the example from Section 3, but with bounded channel types.
I.e., this is an example of a large process composed with a small process (Take).
GenPrime is an example of two processes generating numbers, and a deadlock is
found if they generate the same number; the state and transition numbers are at
the ones at the time when ProB found the deadlock. McCarthy0 is an example
with pure recursive computation, computing the McCarthy function for x = 0..200
and then deadlocking. McCarthy1 and McCarthy2 are the same as McCarthy, but
for x = 0..10000 and x = 0..30000. Scheduler1 CSP is the first refinement of a pro-
cess scheduling specification from [17] in natural CSP style for 5 processes. Sched-
uler0 6 Bexp is the CSP representation of the statespace of the abstract B model
of this process scheduling specification, for 6 processes. This experiment checks to
what extent the tools can deal with large, simple processes (2191 CSP processes
with 14601 prefix operations and 12393 external choices). Server is the example
from Section 3. McCarthy1, FibGen and GenPrime can be found in Appendix A.

One can see that if a file is well tuned for fdr, then fdr can apply its compres-
sion techniques [25] very effectively, and fdr is considerably faster than ProB
(e.g., Crossing). On the other hand, for specifications which are not specifically
designed for fdr, the speed difference can be as dramatic, but in the favour
of our tool. E.g., our tool deals better when subprocesses are large, but the
whole system is not (FibGen). Our tool also seems to be faster at dealing with

7 This was to be fair wrt fdr, as fdr 2.82 was at the time only available as a PPC
version for Mac.

8 http://www.cs.rhul.ac.uk/books/concurrency/

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 293

Table 1. Empirical Results for Deadlock Checking

Specification States Transitions ProB fdr

Alternating bit protocol 1852 4415 2.17 s 0 s
Bank v4 892 1231 0.53 s 0 s
Bank Secure OZ 322 3556 18.84 s 5 s
Crossing 5517 12737 53.93 s 0 s
FibGen 8 7 0.00 s 132 s
GenericBuffer1 24 28 0.01 s 12 s
GenPrime 1240 2258 0.75 s 142 s
McCarthy0 202 201 0.40 s 4 s
McCarthy1 10002 10001 4.04 s 17 s
McCarthy2 30002 30001 14.96 s **
Peterson v1 58 115 0.40 s 0 s
Peterson v2 215 429 1.23 s 0 s
Scheduler1 CSP 4174 18031 8.66 s 2 s
Scheduler0 6 Bexp 2189 14581 2.19 s 6 s
Server 14 17 0.01 s **

large automatically generated CSP files (Scheduler0 6 Bexp) and possibly with
recursion (McCarthy0). fdr seems to have a problem with larger state spaces
(McCarthy1 and McCarthy2; computing the McCarthy function for x>100 in-
volves no recursion).

We can conclude that there are extreme differences between the two tools,
and that they thus complement each other quite nicely.

7 More Related Work, Discussion and Conclusion

Other interesting tools for CSP-M are Casper [21] and CSP-Prover [12]. Apart
from our own earlier work [15,5], our combined CSP and B tool is most strongly
related to the csp2B tool [3]. The csp2B tool allows specifications to be written
in a combination of CSP and B by compiling the CSP to a pure B representation
which can be analysed by a standard B tool. The CSP supported by csp2B covers
a small subset of CSP. On the Z and CSP side there is the model checker for Circus
[31]. As far as using Prolog for process algebras is concerned, the model checking
system xmc implemented in XSB Prolog contains an interpreter for value-passing
CCS [23]. This version of CCS is much smaller in scope than CSP-M.

We have covered almost all of the CSP-M language in our interpreter, but
a few constructs have not yet been implemented at the time of writing. Basi-
cally, only two primitives (extensions and productions) are not yet supported,
some restrictions on channel input patterns apply9 and mixing of closure op-
erations with set operations (especially diff) is not yet fully supported. On the
other hand, we do support some valid CSP syntax which generate errors with

9 They can only contain variables, tuples, integers and constants; e.g., the doubtful
ch?(y+1,x) is not accepted by our tool, but is accepted by FDR.

294 M. Leuschel and M. Fontaine

FDR.10 Also, we have not yet tuned our tool for speed. But as the empirical
results have shown, the tool is already applicable to realistic specifications. In
future, we also plan to apply some of ProB’ symmetry reduction techniques
[18,19] to CSP-M.

In conclusion, we have presented a new fdr-compliant tool for validating
CSP-M specifications, with many unique features making it complementary to
existing tools. It is much broader in scope than the implementation in [15,5].
While developing the tool, we have uncovered some problematic issues with
CSP-M, such as multiple meanings of the dot operator and that substitutivity
of equals does not hold. We foresee the following potential practical applications
of our new tool:

– Validation of combined B and CSP specifications. To our knowledge our
toolset is unique with respect to this capability. In future it should even be
possible to validate combined Z and CSP specifications as well as combined
Event-B and CSP specifications within the the Rodin [4] platform [1]. Note
that one can also use ProB’s refinement checker to check pure B specifica-
tions against pure CSP specifications for property validation; see [5].

– Teaching process algebras and CSP. Source code highlighting of events is
especially useful for beginners. ProB’s interface and graphical visualisation
have also proven to be very useful in a teaching environment.

– Existing CSP applications, as a complement to fdr, so as to find certain
errors more quickly and highlighting errors directly in the source code, and
for the first time providing an LTL model checker [20] for CSP.

– Supporting new kinds of specifications, employing infinite state processes or
sub-processes.

– Safety critical applications where the specification needs to be validated by
independently developed tools.

Acknowledgements

We are grateful for feedback on our new tool from Neil Evans, Steven Schneider,
Helen Treharne, Edd Turner and for feedback on our paper from Daniel Plagge
and anonymous referees. We are also grateful to Phil Armstrong, Michael Gold-
smith, and Bill Roscoe, for insights about the semantics of CSP-M.

References

1. Abrial, J.-R., Butler, M., Hallerstede, S.: An open extensible tool environment for
Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

10 E.g., FDR sometimes generates an error “unsupported comparison processing com-
munication error” when using an if statement on parts of associative tuples received
on a channel.

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 295

2. Basin, D.A., Olderog, E.-R., Sevinç, P.E.: Specifying and analyzing security au-
tomata using csp-oz. In: Bao, F., Miller, S. (eds.) ASIACCS, pp. 70–81. ACM,
New York (2007)

3. Butler, M.: csp2B: A practical approach to combining CSP and B. Formal Aspects
of Computing 12, 182–198 (2000)

4. Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.): Rigorous Devel-
opment of Complex Fault-Tolerant Systems. LNCS, vol. 4157. Springer, Heidelberg
(2006)

5. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

6. Fontaine, M., Leuschel, M.: Typechecking csp specifications using haskell (extended
abstract). In: Proceedings Avocs 2007, Oxford, UK, pp. 171–176 (2007)

7. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual (version 2.8.2)

8. Formal Systems (Europe) Ltd. Process Behaviour Explorer (ProBE User Manual,
version 1.30), http://www.fsel.com/probe manual.html

9. Hill, P., Gallagher, J.: Meta-programming in logic programming. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 5, pp. 421–497. Oxford Science Publications, Oxford
University Press, Oxford (1998)

10. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

11. Hutton, G., Meijer, E.: Monadic Parser Combinators. Technical Report NOTTCS-
TR-96-4, Department of Computer Science, University of Nottingham (1996)

12. Isobe, Y., Roggenbach, M.: A generic theorem prover of CSP refinement. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 108–123. Springer,
Heidelberg (2005)

13. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201. Springer, Heidelberg (1985)

14. Jones, S.P.: The Implementation of Functional Programming Languages. Prentice-
Hall, Englewood Cliffs (1987)

15. Leuschel, M.: Design and implementation of the high-level specification language
CSP(LP) in Prolog. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990,
pp. 14–28. Springer, Heidelberg (2001)

16. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

17. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

18. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B
by permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 79–93. Springer, Heidelberg (2006)

19. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. In: Proceedings International Symmetry Conference, Edinburgh, UK,
January 2007, pp. 71–85 (2007)

20. Leuschel, M., Plagge, D.: Seven at a stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. In: Ameur, Y.A., Boniol, F., Wiels, V.
(eds.) Proceedings Isola 2007. Revue des Nouvelles Technologies de l’Information,
vol. RNTI-SM-1, Cépaduès-Éditions (2007)

http://www.fsel.com/probe_manual.html

296 M. Leuschel and M. Fontaine

21. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of
Computer Security 6(1-2), 53–84 (1998)

22. Naish, L.: An introduction to MU-Prolog. Technical Report 82/2, Department of
Computer Science, University of Melbourne, Melbourne, Australia, March 1982
(Revised, July 1983)

23. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift,
T., Warren, D.S.: Efficient model checking using tabled resolution. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

24. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1999)

25. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking csp or how to check

1020 dining philosophers for deadlock. In: TACAS 2005, pp. 133–152 (1995)

26. Scattergood, J.B.: Tools for CSP and Timed-CSP. PhD thesis, Oxford University
(1997)

27. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. Wiley,
Chichester (1999)

28. Steria, F.: Aix-en-Provence. Atelier B, User and Reference Manuals (1996),
http://www.atelierb.societe.com

29. Treharne, H., Schneider, S.: How to drive a B machine. In: Bowen, J.P., Dunne, S.,
Galloway, A., King, S. (eds.) B 2000, ZUM 2000, and ZB 2000. LNCS, vol. 1878,
pp. 188–208. Springer, Heidelberg (2000)

30. Treharne, H., Schneider, S., Bramble, M.: Composing specifications using commu-
nication. In: Bert, D., Bowen, J.P., King, S., Waldén, M.A. (eds.) ZB 2003. LNCS,
vol. 2651, pp. 58–78. Springer, Heidelberg (2003)

31. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model check-
ing circus. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 237–252. Springer, Heidelberg (2005)

A Some Benchmark Files

McCarthy1

channel out:{0..999999}

McCarthy(n) = if n>100 then

n-10

else

McCarthy(McCarthy(n+11))

Test(n,m) = if n<m then out!McCarthy(n) -> Test(n+1,m) else STOP

MAIN = Test(0,10000)

FibGen

channel out,gen: {0..9999}

FibGen(N,M) = if M<10000 then out!M -> FibGen(M,N+M) else STOP

Take(n) = if n>1 then out?_ -> Take(n-1)

else out?x -> gen!x -> STOP

MAIN = FibGen(0,1) [| {| out |} |] Take(5)

http://www.atelierb.societe.com

Probing the Depths of CSP-M: A New fdr-Compliant Validation Tool 297

GenPrime

channel out,comm:{0..99999}

MAIN = Gen(99999,7) [| {| comm |} |] Gen(99998,29)

Gen(x,d) = out!x -> if x<d then Gen(x,d) else Gen(x-d,d)

[]

comm.x -> STOP

Practical Automated Partial Verification
of Multi-paradigm Real-Time Models�

Carlo A. Furia1, Matteo Pradella2, and Matteo Rossi1

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
2 CNR IEIIT-MI, Milano, Italy

{furia,pradella,rossi}@elet.polimi.it
http://home.dei.polimi.it/lastname/

Abstract. This article introduces a fully automated verification technique that
permits to analyze real-time systems described using a continuous notion of
time and a mixture of operational (i.e., automata-based) and descriptive (i.e.,
logic-based) formalisms. The technique relies on the reduction, under reasonable
assumptions, of the continuous-time verification problem to its discrete-time
counterpart. This reconciles in a viable and effective way the dense/discrete and
operational/descriptive dichotomies that are often encountered in practice when
it comes to specifying and analyzing complex critical systems. The article inves-
tigates the applicability of the technique through a significant example centered
on a communication protocol. Concurrent runs of the protocol are formalized
by parallel instances of a Timed Automaton, while the synchronization rules
between these instances are specified through Metric Temporal Logic formulas,
thus creating a multi-paradigm model. Verification tests run on this model using
a bounded satisfiability checker implementing the technique show consistent
results and interesting performances.

Keywords: Metric temporal logic, timed automata, discretization, dense time,
bounded model checking.

1 Introduction

There is a tension between the standpoints of modeling and of verification when it
comes to choosing a formal notation. The ideal modeling language would be very ex-
pressive, thus capturing sophisticated features of systems in a natural and straightfor-
ward manner; in particular, for concurrent and real-time systems, a dense time model is
the intuitive choice to model true asynchrony. On the other hand, expressiveness is of-
ten traded off against complexity (and decidability), hence the desire for a feasible and
fully automated verification process pulls in the opposite direction of more primitive,
and less expressive, models of time and systems. Discrete time, for instance, is usually
more amenable to automated verification, and quite mature techniques and tools can be
deployed to verify systems modeled under this assumption.

� Work partially supported by FME Small Project and by the MIUR FIRB project “Applicazioni
della Teoria degli Automi all’Analisi, Compilazione e Verifica di Software Critico e in Tempo
Reale”.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 298–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://home.dei.polimi.it/lastname/

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 299

Another, orthogonal, concern of the real-time modeler is the choice between oper-
ational and descriptive modeling languages. Typical examples of operational notations
are Timed Automata (TA) and Timed Petri Nets, while temporal logics are popular
instances of descriptive notations. Operational and descriptive notations have comple-
mentary strengths and weaknesses. For instance, temporal logics are very effective for
describing partial models or requirements about the past (through the natural use of
past operators); automata-based notations, on the other hand, model systems through
the notions of state and transition, and are typically easy to simulate and visualize.
From a modeling viewpoint, the possibility of integrating multiple modeling paradigms
in formalizing a system would be highly desirable.

This paper introduces a verification technique that, under suitable assumptions, rec-
onciles the dense/discrete and operational/descriptive dichotomies in an effective way.
Its goal is to provide a practical means to carry out verification of real-time systems
described using a dense notion of time and a mixture of operational and descriptive
notations. This approach both permits to analyze continuous-time models using fully
automated, discrete-time verification techniques, and allows users to mix operational
(TA) and descriptive (Metric Temporal Logic, MTL) formalisms in the same specifica-
tion. The technique involves an automated translation of the operational component into
temporal logic notation. The resulting MTL model, which describes both the system and
the properties to be verified, is then discretized according to the technique introduced in
[9]. The technique is partial in two respects: it can fail to provide conclusive answers,
and only dense-time behaviors with bounded variability are verified. The most common
approaches to similar verification problems are in fact usually complementary, and in-
volve translating the logic into automata [2]. Our choice is mainly justified by the fact
that logic formulas are composable through conjunction, which facilitates our ultimate
goal of formally combining heterogeneous models.

In this article, we start by providing a dense-time MTL axiomatization of TA. Due to
a well-known expressiveness gap between temporal logics and automata [13] in general
it is impossible to describe the language accepted by a TA through an MTL formula.
What we provide is instead an MTL formalization of the accepting runs of a TA; i.e.,
we model the overall behavior of TA through a set of MTL axioms. It is well-known
that MTL is undecidable over dense time [4]; however, this obstacle can be mitigated
in practice through the discretization technique introduced — and demonstrated to be
practically appealing — in [9]. The undecidability of dense-time MTL entails that the
reduction technique must be incomplete, i.e., there are cases in which we are unable
to solve the verification problem in a conclusive manner. However, as shown in [9],
the impact of this shortcoming can be reduced in many practical cases. We then show
that this approach yields poor results if done naı̈vely. Hence, we carefully revise the
axiomatization and put it in a form that is much more amenable to discretization, ob-
taining a set of discretized MTL formulas describing TA runs. These axioms can then
be combined with other modules written in MTL, and with the properties to be verified.
The resulting model can be analyzed by means of automated discrete-time tools; the
results of this analysis are then used to finally infer results about the verification of the
original dense-time model. We provide an implementation based on the Zot bounded
satisfiability checker [17].

300 C.A. Furia, M. Pradella, and M. Rossi

To investigate the effectiveness of the technique, we experimented with a significant
example centered on the description of a communication protocol by means of a TA.
Concurrent runs of the protocol are formalized by parallel instances of the same au-
tomaton; additionally, the synchronization rules between these instances are formalized
by means of MTL formulas, thus building a multi-paradigm model. Verification tests
were run on these models using the Zot-based tool. The experimental results are en-
couraging, both in terms of performances and in terms of “completeness coverage” of
the method.

In fact, our approach aims at providing a practical approach to the verification of
multi-paradigm models. Hence, we sacrifice completeness in order to have a lightweight
and flexible technique. Also note that, although in this paper TA are the operational for-
malism of choice, the same approach could be applied to other operational formalisms,
such as Timed Petri Nets.

The paper is organized as follows. Section 1.1 briefly summarizes some related re-
search. Section 2 introduces the technical definitions that are needed in the remainder,
namely the syntax and semantics of MTL and TA, and the discretization technique from
[11,9] that will be used. Section 3 shows how to formalize the behavior of TA as a set
of dense-time MTL formulas. Then, Section 4 re-examines the axioms and suitably
modifies them in a way which is most amenable to the application of the discretization
technique. Section 5 describes the example of a simple communication protocol and
reports on the experiments conducted on it with the SAT-based implementation of the
technique. Finally, Section 6 draws some conclusions.

1.1 Related Work

To the best of our knowledge, our approach is rather unique in combining opera-
tional and descriptive formalisms over dense time, trading-off verification completeness
against better performance and practical verification results. On the other hand, each of
the “ingredients” of our method has been studied in isolation in the literature. In this
section we briefly recall a few of the most important results in this respect.

Dense-time verification of operational models is an active field, and it has produced
a few high-performance tools and methods. Let us mention, for instance, Uppaal [15]
for the verification of TA. Although tools such as Uppaal exploit a descriptive notation
to express the properties to be verified, the temporal logic subset is quite simple and
of limited expressive power. In contrast, we allow basically full MTL to be freely used
in both the description of the model and in the formalization of the properties to be
verified, at the price of sacrificing completeness of verification.

MTL verification is also a well-understood research topic. MTL is known to be un-
decidable over dense time domains [4]. A well-known solution to this limitation re-
stricts the syntax of MTL formulas to disallow the expression of exact (i.e., punctual)
time distances [2]. The resulting logic, called MITL, is fully decidable over dense time.
However, the associated decision procedures are rather difficult to implement in prac-
tice and, even if significant progress has recently been made in simplifying them [16],
a serviceable implementation is still lacking.

Another approach to circumvent the undecidability of dense-time MTL builds upon
the fact that the same logic is decidable over discrete time. A few approaches introduce

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 301

some notion of discretization, that is partial reduction of the verification problem from
dense to discrete time. The present paper goes in this direction by extending previous
work on MTL [9] to the case of TA. A different discretization technique, based on the
notion of robust satisfiability of MTL specifications, has been introduced in [6]. Other
work also deals with notions of robustness in order to guarantee that dense-time TA
are implementable with non-ideal architectures [5]. Another well-known notion of dis-
cretization is the one based on the concept of digitization [12], which has been applied
by several authors to the practical verification of descriptive or operational formalisms.
The interested reader may also see the related work section of [9] for a more thorough
comparison of other discretization techniques.

2 Preliminaries and Definitions

2.1 Behaviors

Real-time system models describe the temporal behavior of some basic items and
propositions, which represent the observable “facts” of the system. More precisely, an
item it is characterized by a finite domain Dit (and we write it : Dit) such that at any
instant of time it takes one of the values in Dit. On the other hand, a proposition p is
simply a fact which can be true or false at any instant of time.

A behavior is a formal model of a trace (or run) of some real-time system. Given
a time domain T, a finite set P of atomic propositions, and a finite set of items I, a
behavior b is a mapping b : T → Dit1 × Dit2 × · · · × Dit|I| × 2P which associates
with every time instant t ∈ T the tuple b(t) = 〈v1, v2, . . . , v|I|, P 〉 of item values
and propositions that are true at t. BT denotes the set of all behaviors over T, for an
implicit fixed set of items and propositions. b(t)|it and b(t)|P denote the projection of
the tuple b(t) over the component corresponding to item it and the set of propositions
in 2P respectively. Also, t ∈ T is a transition point for behavior b if t is a discontinuity
point of the mapping b. Depending on whether T is a discrete, dense, or continuous
set, we call a behavior over T discrete-, dense-, or continuous-time respectively. In this
paper, we consider the natural numbers N as discrete-time domain and the nonnegative
real numbers R≥0 as continuous-time (and dense-) time domain.

Non-Zeno and non-Berkeley. Over dense-time domains, it is customary to consider
only physically meaningful behaviors, namely those respecting the so-called non-Zeno
property. A behavior b is non-Zeno if the sequence of transition points of b has no ac-
cumulation points. For a non-Zeno behavior b, it is well-defined the notions of values
to the left and to the right of any transition point t > 0, which we denote as b−(t)
and b+(t), respectively. In this paper, we are interested in behaviors with a stronger re-
quirement, called non-Berkeleyness. Informally, a behavior b is non-Berkeley for some
positive constant δ ∈ R>0 if, for all t ∈ T, there exists a closed interval [u, u + δ] of
size δ such that t ∈ [u, u + δ] and b is constant throughout [u, u + δ]. Notice that a
non-Berkeley behavior (for any δ) is non-Zeno a fortiori. The set of all non-Berkeley
dense-time behaviors for δ > 0 is denoted by Bδ

χ ⊂ BR≥0 . In the following we always
assume behaviors to be non-Berkeley, unless explicitly stated otherwise.

302 C.A. Furia, M. Pradella, and M. Rossi

Syntax and semantics. From a purely semantic point of view, one can consider the
model of a (real-time) system simply as a set of behaviors [3,8] over some time domain
T and sets of items and propositions. In practice, however, every system is specified
using some suitable notation. In this paper system models are represented through a
mixture of MTL formulas [14,4] and TA [1,2]. The syntax and semantics of MTL and
TA are defined in the following. Given an MTL formula or a TA µ, and a behavior b,
we write b |= µ to denote that b represents a system evolution which satisfies all the
constraints imposed by µ. If b |= µ for some b ∈ BT, µ is called T-satisfiable; if b |= µ
for all b ∈ BT, µ is called T-valid. Similarly, if b |= µ for some b ∈ Bδ

χ, µ is called
χδ-satisfiable; if b |= µ for all b ∈ Bδ

χ, µ is called χδ-valid.

2.2 Metric Temporal Logic

Let P be a finite (non-empty) set of atomic propositions, I be a finite set of items, and
J be the set of all (possibly unbounded) intervals of the time domain T with rational
endpoints.We abbreviate intervals with pseudo-arithmetic expressions, such as = d,
< d, ≥ d, for [d, d], (0, d), and [d, +∞), respectively.

MTL syntax. The following grammar defines the syntax of MTL, where I ∈ J and β
is a Boolean combination of atomic propositions or conditions over items.

φ ::= β | φ1 ∨ φ2 | φ1 ∧ φ2 | UI(β1, β2) | SI(β1, β2) | RI(β1, β2) | TI(β1, β2)

In order to ease the presentation of the discretization techniques in Section 2.4, MTL
formulas are introduced in a flat normal form where negations are pushed down to
(Boolean combinations of) atomic propositions, and temporal operators are not nested.
It should be clear, however, that any MTL formula can be put into this form, possibly
by introducing auxiliary propositional letters [7]. The basic temporal operators of MTL
are the bounded until UI (and its past counterpart bounded since SI), as well as its dual
bounded release RI (and its past counterpart bounded trigger TI). The subscripts I
denote the interval of time over which every operator predicates. Throughout the paper
we omit the explicit treatment of past operators (i.e., SI and TI) as it can be trivially
derived from that of the corresponding future operators. In the following we assume a
number of standard abbreviations, such as ⊥,*, ⇒, ⇔, and, when I = (0,∞), we drop
the subscript interval of operators.

MTL semantics. MTL semantics is defined over behaviors, parametrically with respect
to the choice of the time domain T. In particular, the definition of the basic temporal
operators is the following:

b(t) |=T UI(β1, β2) iff there exists d ∈ I such that: b(t + d) |=T β2

and, for all u ∈ [0, d] it is b(t + u) |=T β1

b(t) |=T RI(β1, β2) iff for all d ∈ I it is: b(t + d) |=T β2 or there exists
a u ∈ [0, d) such that b(t + u) |=T β1

b |=T φ iff for all t ∈ T: b(t) |=T φ

We remark that a global satisfiability semantics is assumed, i.e., the satisfiability of
formulas is implicitly evaluated over all time instants in the time domain. This permits

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 303

the direct and natural expression of most common real-time specifications (e.g., time-
bounded response) without resorting to nesting of temporal operators. In addition, every
generic MTL formulas with nesting temporal operators can be “flattened” to the form
we introduced beforehand by introducing auxiliary propositions; in other words flat
MTL and full MTL are equi-satisfiable .

Granularity. For an MTL formula φ, let Jφ be the set of all non-null, finite interval
bounds appearing in φ. Then, Dφ is the set of positive values δ such that any interval
bound in Jφ is an integer if divided by δ.

Derived Temporal Operators. It is useful to introduce a number of derived temporal
operators, to be used as shorthands in writing specification formulas. Those used in this
paper are listed in Table 1 (δ ∈ R>0 is a parameter used in the discretization techniques,
discussed shortly).

We describe informally the meaning of such derived operators, focusing on future
ones (the meaning of the corresponding past operators is easily derivable). ♦I(β) means
that β happens within time interval I in the future.
I(β) means that β holds through-
out the whole interval I in the future. ©̃(β) denotes that β holds throughout some non-
empty interval in the strict future; in other words, if t is the current instant, there exists
some t′ > t such that β holds over (t, t′). Similarly,©(β) denotes that β holds through-
out some non-empty interval which includes the current instant, i.e., over some [t, t′).
Then, �(β1, β2) describes a switch from condition β1 to condition β2, without speci-
fying which value holds at the current instant. On the other hand, �(β1, β2) describes a
switch from condition β1 to condition β2 such that β1 holds at the current instant; more
precisely if �(β1, β2) holds at some instant t, �(β1, β2) holds over (t − δ, t). In addi-
tion, for an item it we introduce the shorthand �(it, v−, v+) for �(it = v−, it = v+).
A similar abbreviation is assumed for �(it, v−, v+). Finally, we use Alw(φ) to denote

Table 1. MTL derived temporal operators

OPERATOR ≡ DEFINITION

♦I(β) ≡ UI(�, β)
←−♦ I(β) ≡ SI(�, β)

I(β) ≡ RI(⊥, β)
←−
 I(β) ≡ TI(⊥, β)

©̃(β) ≡ U(0,+∞)(β,�) ∨ (¬β ∧ R(0,+∞)(β,⊥))
←̃−©(β) ≡ S(0,+∞)(β,�) ∨ (¬β ∧ T(0,+∞)(β,⊥))

©(β) ≡ β ∧ ©̃(β)
←−©(β) ≡ β ∧ ←̃−©(β)

�(β1, β2) ≡

⎧⎨⎩
←̃−©(β1) ∧

(
β2 ∨ ©̃(β2)

)
if T = R≥0

←−♦ =1(β1) ∧ ♦[0,1](β2) if T = N

�(β1, β2) ≡
{

β1 ∧ ♦=δ(β2) if T = R≥0

β1 ∧ ♦=1(β2) if T = N

304 C.A. Furia, M. Pradella, and M. Rossi

φ ∧
(0,+∞)(φ) ∧ ←−
 (0,+∞)(φ). Since b |=T Alw(φ) iff b |=T φ, for any behavior b,
Alw(φ) can be expressed without nesting if φ is flat, through the global satisfiability
semantics introduced beforehand.

2.3 Operational Model: Timed Automata

We introduce a variant of TA which differs from the classical definitions (e.g., [1])
in that it recognizes behaviors, rather than timed words [2,16]. Correspondingly, input
symbols are associated with locations rather than with transitions. Also, we introduce
the following simplifications that are known to be without loss of generality: we do
not define location clock invariants (also called staying conditions) and use transition
guards only, and we forbid self-loop transitions.

We introduce one additional variant which does impact expressiveness, namely clock
constraints do not distinguish between different transition edges, that is between transi-
tions occurring right- and left-continuously. This restriction is motivated by our ultimate
goal of discretizing TA: as it will be explained later, such distinctions would inevitably
be lost in the discretization process, hence we give them up already.

Finally, for the sake of simplicity, we do not consider acceptance conditions, that is
let us assume that all states are accepting. Notice that introducing acceptance conditions
(e.g., Büchi, Muller, etc.) in the formalization would be routine.

TA syntax. For a set C of clock variables, the set Φ(C) of clock constraints ξ is defined
inductively by

ξ ::= c < k | c ≥ k | ξ1 ∧ ξ2 | ξ1 ∨ ξ2

where c is a clock in C and k is a constant in Q≥0.
A timed automaton A is a tuple 〈Σ, S, S0, α, C, E〉, where:

– Σ is a finite (input) alphabet,
– S is a finite set of locations,
– S0 ⊆ S is a finite set of initial locations,
– α : S → 2Σ is a location labeling function that assigns to each location s ∈ S a set

α(s) of propositions,
– C is a finite set of clocks, and
– E ⊆ S × S × 2C × Φ(C) is a set of transitions. An edge 〈s, s′, Λ, ξ〉 represents

a transition from state s to state s′ �= s; the set Λ ⊆ C identifies the clocks to be
reset with this transition, and ξ is a clock constraint over C.

TA semantics. In defining the semantics of TA over behaviors we deviate from the stan-
dard presentation (e.g., [2,16]) in that we do not represent TA as acceptors of behaviors
over the input alphabet Σ, but rather as acceptors of behaviors representing what are
usually called runs of the automaton. In other words, we introduce automata as accep-
tors of behaviors over the items st and in representing, respectively, the current location
and the current input symbol, as well as propositions {rsc | c ∈ C} representing the
clock reset status. This departure from more traditional presentations is justified by the
fact that we intend to provide an MTL axiomatic description of TA runs — rather than
accepted languages, which would be impossible for a well-known expressiveness gap

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 305

[13] — hence we define the semantics of automata over this “extended” state from the
beginning.

Here we sketch an informal description of the semantics. Initially, all clocks are reset
and the automaton is in state s0 ∈ S0. At any given time t, when the automaton is in
some state s, it can take nondeterministically a transition 〈s, s′, Λ, ξ〉 to some other state
s′, only if the last time (before t) each clock has been reset is compatible with constraint
ξ. If the transition is taken, all clocks in Λ are reset, whereas all the other clocks keep
on running. Finally, as long as the automaton is in any state s, the input has to satisfy
the location labeling function α(s), namely the current input corresponds to exactly one
of the propositions in α(s).

A timed automaton A = 〈Σ, S, S0, α, C, E〉 is interpreted over behaviors over items
st : S, in : Σ and propositions R = {rsc | c ∈ C}. At any instant of time t, st = s
means that the automaton is in state s, in = σ means that the input symbol is σ, and
rsc keeps track of resets of clock c (we model such resets through switches, from false
to true or vice versa, of rsc). Let b be such a behavior, and let t be one of its transition
points. Satisfaction of clock constraints at t is defined as follows:

b(t) |= c < k iff either b−(t) |= rsc and there exists t − k < t′ < t s.t. b(t′) �|= rsc;
or b−(t) �|= rsc and there exists a t − k < t′ < t s.t. b(t′) |= rsc

b(t) |= c ≥ k iff either b−(t) |= rsc and for all t − k < t′ < t : b′(t) |= rsc;
or b−(t) �|= rsc and for all t − k < t′ < t : b(t′) �|= rsc

Notice that this corresponds to looking for the previous time the proposition rsc

switched (from false to true or from true to false) and counting time since then. This
requires a little “hack” in the definition of the semantics: namely, a first start reset of all
clocks is issued before the “real” run begins; this is represented by time instant tstart in
the formal semantics below.

Formally, a behavior b over st : S, in : Σ, R (with b : R≥0 → S × Σ × 2R) is a run
of the automaton A, and we write b |=R≥0 A, iff:

– b(0) = 〈s0, σ,
⋃

c∈C{rsc}〉 and σ ∈ α(s0) for some s0 ∈ S0;
– there exists a transition instant tstart > 01 such that: b(t)|st = s0 and b(t)|R = R

for all 0 ≤ t ≤ tstart, b−(tstart) = 〈s0, σ
−, ρ−〉 and b+(tstart) = 〈s+, σ+, ρ+〉

with ρ− = R and ρ+ = ∅;
– for all t ∈ R≥0: b(t)|in ∈ α(b(t)|st);
– for all transition instants t > tstart of b|st or b|R such that b−(t) = 〈s−, σ−, ρ−〉

and b+(t) = 〈s+, σ+, ρ+〉, it is: 〈s−, s+, Λ, ξ〉 ∈ E, σ− ∈ α(s−), σ+ ∈ α(s+),
ρ =

⋃
c∈Λ{rsc}, ρ+ = ρ−�ρ = (ρ− \ ρ) ∪ (ρ \ ρ−), and b(t) |= ξ.

2.4 Discrete-Time Approximations of Continuous-Time Specifications

This section concisely summarizes the fundamental results from [9] that are needed in
the remainder of the paper, and provides some intuition about how they can be applied
to the discretization problem.

1 In the following, we will assume that tstart ∈ (δ, 2δ) for the discretization parameter δ > 0.

306 C.A. Furia, M. Pradella, and M. Rossi

The technique of [9] is based on two approximation functions for MTL formulas,
called under- and over-approximation. The under-approximation function Ωδ (·) maps
dense-time MTL formulas to discrete-time formulas such that the non-validity of the lat-
ter implies the non-validity of the former, over behaviors in Bδ

χ. The over-approximation
function Oδ (·) maps dense-time MTL formulas to discrete-time MTL formulas such
that the validity of the latter implies the validity of the former, over behaviors in Bδ

χ.
We have the following fundamental verification result, which provides a justification
for the TA verification technique discussed in this paper.

Proposition 1 (Approximations [9]). For any MTL formulas φ1, φ2, and for any δ ∈
Dφ1,φ2: (1) if Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is N-valid, then Alw(φ1) ⇒ Alw(φ2)
is χδ-valid; and (2) if Alw(Oδ (φ1)) ⇒ Alw(Ωδ (φ2)) is not N-valid, then Alw(φ1) ⇒
Alw(φ2) is not χδ-valid.

Discussion. Proposition 1 suggests a verification technique which builds two formulas
through a suitable composition of over- and under-approximations of the system de-
scription and the putative properties, and it infers the validity of the properties from the
results of a discrete-time validity checking. The technique is incomplete as, in particu-
lar, when approximation (1) is not valid and approximation (2) is valid nothing can be
inferred about the validity of the property in the original system over dense time.

It is important to notice that equivalent dense-time formulas can yield dramatically
different — in terms of usefulness — approximated discrete-time formulas. For in-
stance, consider dense-time MTL formula θ1 =
(0,δ)(p) which, under the global sat-
isfiability semantics, says that p is always true. Its under-approximation is Ωδ (θ1) =

∅(p) which holds for any discrete-time behavior! Thus, we have an under-approx-
imation which is likely too coarse, as it basically adds no information to the discrete-
time representation. So, if we build formula (1) from Proposition 1 with Ωδ (θ1) in it,
it is likely that the antecedent will be trivially satisfiable (because Ωδ (θ1) introduces
no constraint) and hence formula (1) will be non-valid, yielding no information to the
verification process. If, however, we modify θ1 into the equivalent θ′1 = p ∧ θ1 we get
an under-approximation which can be written simply as Ωδ (θ′1) = p, which correctly
entails that p is always true over discrete-time as well. This is likely a much better
approximation, one which better preserves the original “meaning” of θ1.

3 Formalizing Timed Automata in MTL

Consider a TA A = 〈Σ, S, S0, α, C, E〉; this section introduces an MTL formalization
of the runs of A over non-Berkeley behaviors, for some δ > 0. In other words, this
section provides a set of formulas φ1, . . . , φ6 such that, for all non-Berkeley behaviors
b, b |= A iff b |= φj for all j = 1, . . . , 6.

Clock constraints. Given a clock constraint ξ, we represent by Ξ(ξ) an MTL formula
such that b(t) |= ξ iff b(t) |= Ξ(ξ) at all transition points t. Ξ(ξ) can be defined
inductively as:

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 307

Ξ (c < k) ≡ ←̃−©(rsc) ∧
←−♦ (0,k)(¬rsc) ∨ ←̃−©(¬rsc) ∧

←−♦ (0,k)(rsc)

Ξ (c ≥ k) ≡ ←̃−©(rsc) ∧
←−
 (0,k)(rsc) ∨ ←̃−©(¬rsc) ∧

←−
 (0,k)(¬rsc)
Ξ (ξ1 ∧ ξ2) ≡ Ξ (ξ1) ∧ Ξ (ξ1)
Ξ (ξ1 ∨ ξ2) ≡ Ξ (ξ1) ∨ Ξ (ξ1)

Essentially, Ξ translates guard ξ by comparing the current time to the last time a reset
for the clock c happened, where a reset is represented by a switching of item rsc. Notice
that, to compute the approximations of the clock-constraint formulas, every constant k
used in the definition of the TA must be an integral multiple of δ.

Necessary conditions for state change. Let us state the necessary conditions that char-
acterize a state change. For any pair of states si, sj ∈ S such that there are K transitions
〈si, sj , Λ

k, ξk〉 ∈ E for all 1 ≤ k ≤ K , we introduce the following axiom:

�(st, si, sj) ⇒
∨
k

⎛⎝Ξ(ξk) ∧
∧

c∈Λk

(
�(¬rsc, rsc) ∨�(rsc,¬rsc)

)⎞⎠ (1)

Also, we introduce an axiom asserting that, for any pair of states si �= sj ∈ S such that
〈si, sj , Λ, ξ〉 �∈ E for any Λ, ξ (i.e., for any pair of states that are not connected by any
edge), there cannot be a transition from si to sj:

¬�(st, si, sj) (2)

Sufficient conditions for state change. There are multiple sufficient conditions for state
changes; basically, they account for reactions to reading input symbols and resetting
clocks. Let us consider input first: the staying condition in every state must be satisfied
always, so for all s ∈ S the following axiom is added:

st = s ⇒ in ∈ α(s) (3)

Then, for each reset of a clock c ∈ C, for all 1 ≤ k ≤ K such that 〈sk
i , sk

j , Λk, ξk〉 ∈ E

is an edge such that c ∈ Λk (i.e., on which c is reset), the following axiom is introduced
(a similar one for the transition of rsc from true to false is also included):

�(¬rsc, rsc) ⇒
∨
k

�
(
st, sk

i , sk
j

)
(4)

Initialization and liveness condition. The axiomatization is completed by including for-
mulas describing initialization and liveness conditions. The following axiom, describing
system initialization, is only evaluated at 0:

at 0:
∧
c∈C

rsc ∧ ♦[0,2δ]

(∧
c∈C

¬rsc

)
∧

∨
s0∈S0

©(st = s0) (5)

Finally, we introduce a “liveness” condition stating that the automaton must eventually
move out of every state. Thus, for every state s ∈ S, if S′

s ⊂ S is the set of states that

308 C.A. Furia, M. Pradella, and M. Rossi

are directly reachable from s through a single transition the following axiom asserts
that, if the automaton is in s, it must eventually move to a state in S′

s:

st = s ⇒ ♦

⎛⎝ ∨
s′∈S′

s

st = s′

⎞⎠ (6)

Since axiom (6) does not mandate that only some particular states must be traversed
infinitely often, this corresponds to the condition that all states are accepting à la Büchi.

The next proposition states the axiomatization correctness (see [10] for details).

Proposition 2 (MTL TA Axiomatization). Let A = 〈Σ, S, S0, α, C, E〉 be a timed
automaton, φA

1 , . . . , φA
6 be formulas (1–6) for TA A, and let b ∈ Bδ

χ be any non-Berkeley
behavior over items st : S, in : Σ and propositions in R. Then b |= A if and only if
b |=

∧
1≤j≤6 φA

j .

4 Discrete-Time Approximations of Timed Automata

While formulas (1–6) correctly formalize the behavior of TA as defined in Section 2.3,
they yield approximations of little use for verification purposes, since they are very
likely to produce inconclusive results due to the incompleteness of the technique. To
avoid such problems, instead of computing approximations directly from axioms (1–6),
we introduce new formulas, which are equivalent to (1–6) over non-Berkeley behav-
iors, but whose form yields better approximations. In the rest of this section we first
compute the under-approximation of formulas (1–6) (Section 4.1), and then their over-
approximation (Section 4.2).

4.1 Under-Approximation

As mentioned above, the form of some of the axioms (1–6) produces under-approxima-
tions that are ill-suited to perform verification through the discretization technique of
[9], due to the inherent incompleteness of the latter.

While the details underlying this issue are outside the scope of this arti-
cle (and can be found in [10]), let us hint at some of the problems that arise
from the under-approximation of formulas (1–6). First, it can be shown that, in
general, Ωδ (¬�(β1, β2)) �= ¬Ωδ (�(β1, β2)); since subformulas of the form
�(st = si, st = sj) are used in (1–6) to describe state transitions, there are discrete-
time behaviors where such a transition both occurs and does not occur, i.e.,
Ωδ (�(st = si, st = sj)) and Ωδ (¬�(st = si, st = sj)) are both true, which is an ap-
proximation too coarse to be useful. Second, Ωδ (¬�(β1, β2)) is a very weak formula,
in that it can be shown to be true, in particular, whenever β1 or β2 are false; then, an-
tecedents �(st = si, st = sj) in (1–6) are trivially true because it can never be that both
st = si and st = sj when si �= sj .

To obtain better approximations, in the new axiomatization every occurrence of
�(β1, β2) is replaced with �(β1, β2). This entails that formulas Ξ(ξ) representing

clock constraints must also be changed in
−→
Ξ (ξ), where

−→
Ξ is defined below. Hence,

formulas (1–2),(4) become:

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 309

�(st, si, sj) ⇒
∨
k

−→
Ξ (ξk) ∧

∧
c∈Λk

(
�(¬rsc, rsc) ∨ �(rsc,¬rsc)

)
(7)

¬�(st, si, sj) (8)

�(¬rsc, rsc) ⇒
∨
k

�
(
st, sk

i , sk
j

)
(9)

where
−→
Ξ is defined as follows:

−→
Ξ (c < k) ≡ rsc ∧

←−♦ (0,k)(¬rsc) ∨ ¬rsc ∧
←−♦ (0,k)(rsc)−→

Ξ (c ≥ k) ≡ rsc ∧
←−
 (0,k−δ)(rsc) ∨ ¬rsc ∧

←−
 (0,k−δ)(¬rsc)

It can be shown that, given a non-Berkeley behavior b ∈ Bδ
χ, b |= (1) iff b |= (7),

b |= (2) iff b |= (8) and b |= (4) iff b |= (9).

Proof. Let us first show that (1) implies (7), so let t be the current instant, assume that
(1) and the antecedent �(st, si, sj) of (7) hold: we establish that the consequent of (7)
holds. �(st, si, sj) means that st = si at t and st = sj �= si at t + δ; hence there
must be a transition instant t′ of item st somewhere in [t, t + δ]. Then (1) evaluated
at t′ entails that t′ is a transition instant for some propositions rsc|c∈Λk as well. Let
d ∈ C be anyone of such clocks and assume that �(rsd,¬rsd) holds at t′. Let us first
assume t′ ∈ (t, t + δ); correspondingly, from the non-Berkeleyness assumption, rsd

holds over [t, t′) and ¬rsd holds over (t′, t + δ]. In particular, rsd holds at t and ¬rsd

holds at t + δ, so �(rsd,¬rsd) holds at t. Otherwise, let t′ = t, so st changes its value
left-continuously at t. Then, again from (1) and the non-Berkeleyness assumption, rsd

also changes its value left-continuously, so rsd holds at t and ¬rsd holds at t+δ. Finally,
if t′ = t + δ, st changes its value right-continuously at t′, so rsd also changes its value
right-continuously, so rsd holds at t and ¬rsd holds at t+δ. In all, since d is generic, and
the same reasoning applies for the converse transition�(¬rsd, rsd), we have established
that

∧
c∈Λk (�(¬rsc, rsc) ∨ �(rsc,¬rsc)) holds at t.

Next, let us establish
−→
Ξ (ξk) from Ξ(ξk). Let us first consider some Ξ (d < k) such

that
←̃−©(rsd) ∧

←−♦ (0,k)(¬rsd) at t′. So, let t′′ ∈ (t′ − k, t′) be the largest instant with
a transition from ¬rsd to rsd. Note that it must actually be t′′ ∈ (t′ − k, t] because
t′ − t ≤ δ and the non-Berkeleyness assumption. If t′′ ∈ (t′ − k, t) ⊆ (t − k, t)
then rsd ∧ ←−♦ (0,k)(¬rsd) holds at t, hence

−→
Ξ (d < k) is established. If t′′ = t then

rsd switches to true right-continuously at t, so rsd ∧ ←̃−©(¬rsd) at t which also entails
−→
Ξ (d < k). The same reasoning applies if

←̃−©(¬rsc) ∧
←−♦ (0,k)(rsc) holds at t′. Finally,

consider some Ξ (d ≥ k) such that
←̃−©(rsd)∧

←−
 (0,k)(rsd) holds at t, thus rsd holds over
(t − k, t). From t ≤ t′ + δ we have t′ + δ − k ≥ t + k so (t′ − k + δ, t′) ⊆ (t − k, t),
which shows that

←−
 (0,k−δ)(rsd) holds at t′. The usual reasoning about transition edges
would allow us to establish that also rsd holds at t′. Since the same reasoning applies

310 C.A. Furia, M. Pradella, and M. Rossi

if
←̃−©(¬rsd) ∧

←−
 (0,k)(¬rsd), we have established that
−→
Ξ (d ≥ k) holds at t′. Since d is

generic, we have that
−→
Ξ (ξk) holds at t′.

Let us now prove (7) implies (1), so let t be the current instant, assume that (7) and the
antecedent �(st, si, sj) of (1) hold: we establish that the consequent of (1) holds. So,
there is a transition of st from si to sj �= si at t; from the non-Berkeleyness assumption
we have that st = si and st = sj hold over [t − δ, t) and (t, t + δ], respectively. If the
transition of st is left-continuous (i.e., st = si holds at t), consider (7) at t, where the
antecedent holds. So,

−→
Ξ (ξk)∧

∧
c∈Λk (�(¬rsc, rsc) ∨ �(rsc,¬rsc)) holds at t for some

k. Let d ∈ Λk be such that �(¬rsd, rsd) holds, that is ¬rsd holds at t and rsd holds at
t + δ. This entails that there exists a transition point t′ ∈ [t, t + δ] of rsd. However, t is
already a transition point, thus it must be t′ = t; this shows �(¬rsd, rsd) at d. Recall
that d is generic, and the same reasoning applies for the converse transition from rsd

to ¬rsd. If, instead, the transition of st is right-continuous (i.e., st = sj holds at t), we
consider (7) at t − δ and perform a similar reasoning. All in all, we have established
that

∧
c∈Λk (�(¬rsc, rsc) ∨�(rsc,¬rsc)) holds at t.

The clock constraint formula Ξ(ξk) can also be proved along the same lines. For

instance, assume that the transition of st at t is left-continuous and
←−©(rsd) holds at t

for some d ∈ C, and consider a constraint
−→
Ξ (d < k) at t. We have that

←−♦ (0,k)(¬rsd)
must holds at t, which establishes that Ξ(d < k) holds at t. Similar reasonings apply to
the other cases. See [10] for proofs of the other equivalences. �$
Then, the axiomatization of TA given by formulas (7–9),(3),(5–6) yields the following
under-approximations.

Ωδ ((7)) ≡ �(st, si, sj) ⇒
∨
k

Ωδ

(−→
Ξ (ξk)

)
∧

∧
c∈Λk

⎛⎝�(¬rsc, rsc)
∨

�(rsc,¬rsc)

⎞⎠ (10)

where:

Ωδ

(−→
Ξ (c < k)

)
≡ rsc ∧

←−♦ [0,k/δ](¬rsc) ∨ ¬rsc ∧
←−♦ [0,k/δ](rsc)

Ωδ

(−→
Ξ (c ≥ k)

)
≡ rsc ∧

←−
 [1,k/δ−2](rsc) ∨ ¬rsc ∧
←−
 [0,k/δ−2](¬rsc)

In addition the following can be proved to hold:

Ωδ ((8)) ≡ ¬�(st, si, sj) (11)

Ωδ ((9)) ≡ �(¬rsc, rsc) ⇒
∨
k

�
(
st, sk

i , sk
j

)
(12)

Ωδ ((3)) ≡ (3) (13)

at 0: Ωδ ((5)) ≡
∧
c∈C

rsc ∧ ♦[1,2]

(∧
c∈C

¬rsc

)
∧

∨
s0∈S0

st = s0 (14)

Ωδ ((6)) ≡ (6) (15)

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 311

4.2 Over-Approximation

While the over-approximation of axioms (1–6) poses less problems than their under-
approximation, it must nonetheless be carried out very carefully, and some modifica-
tions to the axioms are in order in this case, too. Notice that the following equalities
hold:

– Oδ

(
©̃(β)

)
=
[0,1](β).

– Oδ

(
♦[0,2δ](β)

)
= ♦=1(β).

– Oδ (©(β)) =
[0,1](β).

– Oδ

(
←̃−©(β)

)
= Oδ

(←−©(β)
)

=
←−
 [0,1](β).

– Oδ (¬�(β1, β2)) = ¬(�(β1, β2) ∨ �(β1, β2)) if ¬(β1 ∧ β2) holds.

The over-approximations of the clock constraints (i.e., Oδ (Ξ(ξ))) pose little problems
when ξ is of the form c < k; however, when ξ is of the form c ≥ k, they yield formulas
that are unsatisfiable if there are some transitions that reset c and whose guard is c ≥ k.
Hence, the definition of Ξ(c ≥ k) must be modified in the following way (which is
equivalent to the previous formulation for non-Berkeley behaviors):

Ξ (c ≥ k) ≡ ←̃−©(rsc) ∧
←−
 [δ,k)(rsc) ∨ ←̃−©(¬rsc) ∧

←−
 [δ,k)(¬rsc)

Therefore, the over-approximations of the new clock constraints are the following:

Oδ (Ξ (c < k)) ≡ ←−
 [0,1](rsc) ∧
←−♦ [1,k/δ−1](¬rsc) ∨

←−
 [0,1](¬rsc) ∧
←−♦ [1,k/δ−1](rsc)

Oδ (Ξ (c ≥ k)) ≡ ←−
 [0,1](rsc) ∧
←−
 [0,k/δ+1](rsc) ∨

←−
 [0,1](¬rsc) ∧
←−
 [0,k/δ+1](¬rsc)

The over-approximation of formula (1), instead, is very poor verification-wise, because
subformulas of the form �(β1, β2) such that β1, β2 cannot hold at the same instant
produce over-approximations that are unsatisfiable. The same problems arise with the
over-approximation of formula (4).

However, similarly to what was done in Section 4.1, it is possible to rewrite axioms
(1) and (4) so that they yield better over-approximations. The two following formulas
are equivalent, over non-Berkeley behaviors, to (1) and (4), respectively (see [10] for
equivalence proofs).

�(st, si, sj) ⇒
∨
k

⎛⎜⎜⎝Ξ(ξk) ∧
∧

c∈Λk

⎛⎜⎜⎝
←̃−©(¬rsc) ∧
=δ(st = sj ⇒ rsc)

∨
←̃−©(rsc) ∧
=δ(st = sj ⇒ ¬rsc)

⎞⎟⎟⎠
⎞⎟⎟⎠ (16)

�(¬rsc, rsc) ⇒
∨
k

(←̃−©
(
st = sk

i

)
∧
=δ

(
rsc ⇒ st = sk

j

))
(17)

Intuitively, the equivalence of (1) and (16) can be proved noting that, if �(st, si, sj)
holds at instant t in some non-Berkeley behavior b because a transition 〈si, sj , Λ

k, ξk〉 ∈

312 C.A. Furia, M. Pradella, and M. Rossi

E is taken, then, for the non-Berkeleyness of b it must be st = sj throughout (t, t + δ].

As a consequence of (16), for any c ∈ Λk, if
←̃−©(¬rsc) at t then rsc holds at t+δ. For the

non-Berkeleyness of b it must be that ©̃(rsc) holds at t, hence �(¬rsc, rsc) also holds

at t. The case
←̃−©(¬rsc) at t is handled in the same way. Similar reasoning can be used

to prove the equivalence of (4) and (17).
Finally, formulas (16–17),(2–3),(5–6) yield the following over-approximations, after

performing some discrete-time simplifications:

Oδ ((16)) ≡

�(st, si, sj) ⇒
∨
k

⎛⎜⎜⎜⎝
Oδ

(
Ξ(ξk)

)
∧

∧
c∈Λk

⎛⎜⎝
←−
 [0,1](¬rsc) ∧
[0,2](st = sj ⇒ rsc)

∨
←−
 [0,1](rsc) ∧
[0,2](st = sj ⇒ ¬rsc)

⎞⎟⎠
⎞⎟⎟⎟⎠ (18)

Oδ ((17)) ≡ �(¬rsc, rsc) ⇒
∨
k

(←−
 [0,1]

(
st = sk

i

)
∧
[0,2]

(
rsc ⇒ st = sk

j

))
(19)

Oδ ((2)) ≡ ¬(�(st, si, sj) ∨ �(st, si, sj)) (20)

Oδ ((3)) ≡ (3) (21)

at 0: Oδ ((5)) ≡
∧
c∈C

rsc ∧ ♦=1

(∧
c∈C

¬rsc

)
∧

∨
s0∈S0

[0,1](st = s0) (22)

Oδ ((6)) ≡ (6) (23)

4.3 Summary

The following proposition, following from Propositions 1–2 and the results of the pre-
vious sections, summarizes the results of the discrete-time approximation formulas.

Proposition 3. Let S be a real-time system described by TA A = 〈Σ, S, S0, α, C, E〉
and by a set of MTL specification formulas {φsys

j }j over items in I and propositions
in P . Also, let φprop be another MTL formula over items in I ∪ {st : S, in : Σ} and
propositions in P ∪ R. Then:

– if:

Alw

⎛⎝φA
(10) ∧ φA

(11) ∧ φA
(12) ∧ φA

(13) ∧ φA
(14) ∧ φA

(15) ∧
∧
j

Ωδ

(
φsys

j

)⎞⎠
⇒ Alw(Oδ (φprop))

is N-valid, then φprop is satisfied by all non-Berkeley runs b ∈ Bδ
χ of the system;

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 313

– if:

Alw

⎛⎝φA
(18) ∧ φA

(19) ∧ φA
(20) ∧ φA

(21) ∧ φA
(22) ∧ φA

(23) ∧
∧
j

Oδ

(
φsys

j

)⎞⎠
⇒ Alw(Ωδ (φprop))

is not N-valid, then φprop is false in some non-Berkeley run b ∈ Bδ
χ of the system.

5 Implementation and Example

We implemented the verification technique of this paper as a plugin to the Zot bounded
satisfiability checker [17,18] called TAZot. The plugin provides a set of primitives by
which the user can define the description of a TA, of a set of MTL axioms, and a set of
MTL properties to be verified. The tool then automatically builds the two discrete-time
approximation formulas of Proposition 3. These are checked for validity over time N;
the results of the validity check allows one to infer the validity of the original dense-time
models, according to Proposition 3.

The verification process in TAZot consists of three sequential phases. First, the
discrete-time MTL formulas of Proposition 3 are built and are translated into a propo-
sitional satisfiability (SAT) problem. Second, the SAT instance is put into conjunctive
normal form (CNF), a standard input format for SAT solvers. Third, the CNF formula
is fed to a SAT solving engine (such as MiniSat, zChaff, or MiraXT).

5.1 A Communication Protocol Example

We demonstrate the practical feasibility of our verification techniques by means of an
example, where we verify certain properties of the following communication protocol.

Consider a server accepting requests from clients to perform a certain service (the
exact nature of the service is irrelevant for our purposes). Initially, the server is idle
in a passive open state. At any time, a client can initiate a protocol run; when this
is the case, the server moves to a try state. Within T1 time units, the state moves to
a new s1 state, characterizing the first request of the client for the service. The re-
quest can either terminate within T2 time units, or time-out after T2 time units have
elapsed. When it terminates, it can do so either successfully (ok) or unsuccessfully (ko).
In case of success, the protocol run is completed afterward, and the server goes back
to being idle. In case of failure or time-out, the server moves to a new s2 state for
a second attempt. The second attempt is executed all similarly to the first one, with
the only exception that the system goes back to the idle state afterward, regardless of
the outcome (success, failure, or time-out). The timed automaton of Figure 1 models the
protocol.2

We verified the following 5 properties of a single instance of the automaton:

2 Since the definition of clock constraints forbids the introduction of exact constraints such as
A = T2, such constraints represent a shorthand for the valid clock constraint T2 ≤ A < T +δ.

314 C.A. Furia, M. Pradella, and M. Rossi

idle try s1

ok1

ko1

tout1

s2

ok2

ko2

tout2

G, S := 0 S < T1 , A := 0

A < T2

A < T2 , S := 0

A = T2, S := 0

S < T1 , A := 0

S < T1 , A := 0

A < T2

A < T2

A = T2

G < T3

G < T3

G < T3

G < T3

Fig. 1. Timed automaton modeling the communication protocol

1. “If there is a success, the server goes back to idle without passing through error
states.”

ok1 ∨ ok2 ⇒ U(ko1 ∨ ko2, idle)

2. “If there is a failure, the server goes back to idle without passing through success
states.”

ko1 ∨ ko2 ⇒ U(ok1 ∨ ok2, idle)

This property is false, and in fact counterexamples are produced in the tests.
3. “A full run of the protocol executes in no more than T3 time units.”

try ⇒ ♦(0,T3)(idle)

This property cannot be verified due to the incompleteness of the method: whether
a run is completed in T3/δ time instants depends sensibly on how the sampling is
chosen. However, if we slightly weaken the property by changing T3 into T3+δ the
method is successful in verifying the property. In the tables, the (verified) property
— modified in this way — is labeled 3’.

4. “The first attempt of the protocol is initiated no later than 2T1 + T2 + δ time units
after the run has been initiated.”

s1 ⇒ ←−♦ (0,2T1+T2+δ)(try)

5. “A run is terminated within T3 time units after a successful outcome, without going
through failure states.”

ok1 ⇒ U(0,T3)
(¬(ko1 ∨ ko2), idle)

We also considered concurrent runs of Nr ≥ 2 instances of the automaton, synchro-
nized under the assumption that two parallel protocol runs that are initiated concurrently

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 315

either both terminate successfully, or both terminate unsuccessfully. This is formalized
by the following MTL formula:

∀1 ≤ i < j ≤ Nr : tryi ∧ tryj ⇒
U

(
¬(tout2i ∨ ko2

i), ok1
i ∨ ok2

i
)
∧ U

(
¬(tout2j ∨ ko2

j), ok1
j ∨ ok2

j
)

∨
U

(
¬(ok1

i ∨ ok2
i), tout2i ∨ ko2

i
)
∧ U

(
¬(ok1

j ∨ ok2
j), tout2j ∨ ko2

j
)

Correspondingly, we introduce the following two properties to be verified in this
concurrent system.

6. “If at some time one process succeeds and the other fails, then they have not begun
the current run together.”

ok2
A ∧ ko2

B ⇒ S(0,T3)

(
¬(tryA ∧ tryB), tryA ∨ tryB

)
7. “If at some time one process succeeds and the other failed recently, then they have

not begun the current run together.”

ok2
A ∧ ←−♦ (0,T1)

(
ko2

B
)

⇒ S(0,T3)

(
¬(tryA ∧ tryB), tryA ∨ tryB

)
5.2 Experimental Evaluation

Tables 2 shows some results obtained in tests with TAZot verifying the properties above.
In all tests it is δ = 1. For each test the table reports: the checked property; the number
Nr of parallel protocol runs, according to which the discretizations are built; the values
of other parameters in the model (i.e., T1, T2, T3); the temporal bound k of the time
domain (as Zot is a bounded satisfiability checker, it considers all the behaviors with
period ≤ k); the total amount of time and space (in MBytes) to perform each phase
of the verification, namely formula building (FB), transformation into conjunctive nor-
mal form (CNF), and propositional satisfiability checking (SAT); and the total size (in
thousands of clauses) of the propositional formulas that have been checked. The tests
have been performed on a PC equipped with an AMD Athlon64 X2 Dual-Core Proces-
sor 4000+, 2 Gb of RAM, and Kubuntu GNU/Linux (kernel 2.6.22). TAZot used GNU
CLisp 2.41 and MiniSat 2.0 as SAT-solving engine.

The experiments clearly shows that the formula building time is usually negligible;
the satisfiability checking time is also usually acceptably small, at least within the pa-
rameter range for the experiments we considered. On the contrary, the time to convert
formulas in conjunctive normal form usually dominates in our tests. This indicates that
there is significant room for practical scalability of our verification technique. In fact,
from a computational complexity standpoint, the SAT phase is clearly the critical one,
as it involves solving an NP-complete problem. On the other hand, the CNF routine has
a quadratic running time.

Another straightforward optimization could be the implementation of the TA encod-
ing directly in CNF, to bypass the sat2cnf routine. This can easily be done, because
the structure of the formulas in the axiomatization is fixed. In conclusion, we can safely
claim that the performances obtained in the tests are satisfactory in perspective, and
they successfully demonstrate the practical feasibility of our verification technique.

316 C.A. Furia, M. Pradella, and M. Rossi

Table 2. Checking properties of the communication protocol

PR.# Nr T1, T2, T3 k FB (time/mem) CNF (time/mem) SAT (time/mem) # KCL.
1 1 3,6,18 30 0.1 min/114.6 Mb 3.9 min 0.3 min/90.2 Mb 520.2
2 1 3,6,18 30 0.1 min/228.6 Mb 7.8 min 0.5 min/180.1 Mb 1037.9
3 1 3,6,18 30 0.2 min/244.3 Mb 9.1 min 0.7 min/195.6 Mb 1112.4
3’ 1 3,6,18 30 0.1 min/122.5 Mb 4.6 min 0.4 min/98.0 Mb 557.7
4 1 3,6,18 30 0.1 min/121.4 Mb 4.5 min 0.3 min/97.4 Mb 553.2
5 1 3,6,18 30 0.1 min/122.6 Mb 4.6 min 0.4 min/97.9 Mb 557.3
1 1 3,6,24 36 0.1 min/146.8 Mb 6.3 min 0.5 min/117.9 Mb 669.1
2 1 3,6,24 36 0.2 min/292.9 Mb 12.5 min 0.9 min/235.4 Mb 1335.2
3 1 3,6,24 36 0.2 min/319.0 Mb 15.4 min 1.2 min/258.6 Mb 1459.0
3’ 1 3,6,24 36 0.1 min/159.9 Mb 7.6 min 0.7 min/129.3 Mb 731.3
4 1 3,6,24 36 0.1 min/155.0 Mb 7.2 min 0.5 min/126.4 Mb 708.5
5 1 3,6,24 36 0.1 min/160.3 Mb 7.8 min 0.9 min/129.8 Mb 731.3
1 1 4,8,24 40 0.1 min/171.9 Mb 8.5 min 0.7 min/136.2 Mb 785.5
2 1 4,8,24 40 0.2 min/343.1 Mb 17.2 min 1.2 min/271.9 Mb 1567.7
3 1 4,8,24 40 0.3 min/372.1 Mb 21.0 min 1.7 min/297.3 Mb 1705.1
3’ 1 4,8,24 40 0.1 min/186.5 Mb 10.2 min 0.9 min/148.9 Mb 854.6
4 1 4,8,24 40 0.1 min/184.6 Mb 10.3 min 0.8 min/148.3 Mb 846.6
5 1 4,8,24 40 0.1 min/186.9 Mb 10.4 min 1.1 min/148.9 Mb 854.5
1 1 3,15,90 105 2.2 min/819.6 Mb 203.8 min 20.0 min/674.7 Mb 3826.9
2 1 3,15,90 105 4.4 min/1637.3 Mb 389.2 min 31.3 min/1352.5 Mb 7645.2
3 1 3,15,90 105 5.6 min/1945.7 Mb 561.2 min 61.1 min/821.2 Mb 9103.8
3’ 1 3,15,90 105 2.9 min/974.0 Mb 286.7 min 61.1 min/410.9 Mb 4557.2
4 1 3,15,90 105 2.3 min/864.5 Mb 224.8 min 14.4 min/381.0 Mb 4042.8
5 1 3,15,90 105 3.2 min/981.1 Mb 291.4 min 342.5 min/463.4 Mb 4571.0

6 2 3,6,18 30 0.2 min/241.6 Mb 16.7 min 1.6 min/192.4 Mb 1098.9
7 2 3,6,18 30 0.2 min/244.9 Mb 17.3 min 1.8 min/194.4 Mb 1114.4
6 2 3,6,24 36 0.2 min/313.7 Mb 28.7 min 2.4 min/254.5 Mb 1432.0
7 2 3,6,24 36 0.2 min/317.6 Mb 31.0 min 2.7 min/257.5 Mb 1450.5
6 2 4,8,24 40 0.3 min/366.3 Mb 39.5 min 3.5 min/294.1 Mb 1675.3
7 2 4,8,24 40 0.3 min/371.5 Mb 38.2 min 3.8 min/297.0 Mb 1700.1

6 4 3,6,18 30 0.3 min/472.3 Mb 61.4 min 5.0 min/377.3 Mb 2145.6
7 4 3,6,18 30 0.3 min/475.5 Mb 62.3 min 5.3 min/379.3 Mb 2161.1
6 4 3,6,24 36 0.5 min/609.3 Mb 101.6 min 8.7 min/483.6 Mb 2777.7
7 4 3,6,24 36 0.5 min/613.2 Mb 103.1 min 9.2 min/486.2 Mb 2796.2
6 4 4,8,24 40 0.5 min/712.3 Mb 139.2 min 12.1 min/577.0 Mb 3254.6
7 4 4,8,24 40 0.6 min/717.5 Mb 141.0 min 12.6 min/580.3 Mb 3279.5

6 Conclusion

In this paper, we introduced a technique to perform partial verification of real-time
systems modeled with dense time and using mixed operational and descriptive compo-
nents. The proposed approach is fully automated and implemented on top of a discrete-
time bounded satisfiability checker. We experimented with a non-trivial example of
a communication protocol, where concurrent runs of the protocol are synchronized

Practical Automated Partial Verification of Multi-paradigm Real-Time Models 317

through additional MTL formulas, hence building a mixed model. Verification tests
showed consistent results and reasonable performances. As future work, we intend to
improve the efficiency of the technique by using a pure CNF encoding, and to investi-
gate the use of other operational formalisms, such as timed Petri nets.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the
ACM 43(1), 116–146 (1996)

3. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–
106. Springer, Heidelberg (1992)

4. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and
Computation 104(1), 35–77 (1993)

5. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed
implementations. Formal Aspects of Computing 17(3), 319–341 (2005)

6. Fainekos, G.E., Pappas, G.J.: Robust sampling for MITL specifications. In: Raskin, J.-F.,
Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, Springer, Heidelberg (2007)

7. Furia, C.A.: Scaling up the formal analysis of real-time systems. PhD thesis, DEI, Politecnico
di Milano (May 2007)

8. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing. Technical
Report 2007.22, DEI, Politecnico di Milano (January 2007)

9. Furia, C.A., Pradella, M., Rossi, M.: Automated verification of dense-time MTL specifi-
cations via discrete-time approximation. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008.
LNCS, vol. 5014, pp. 132–147. Springer, Heidelberg (2008)

10. Furia, C.A., Pradella, M., Rossi, M.: Practical automated partial verification of multi-
paradigm real-time models (April 2008), http://arxiv.org/abs/0804.4383

11. Furia, C.A., Rossi, M.: Integrating discrete- and continuous-time metric temporal logics
through sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
215–229. Springer, Heidelberg (2006)

12. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

13. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer,
Heidelberg (1998)

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

15. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer 1(1–2) (1997)

16. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

17. Pradella, M.: Zot (March 2007), http://home.dei.polimi.it/pradella
18. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the future: bi-

infinite time in the verification of temporal properties. In: Proc. of ESEC/FSE 2007 (2007)

http://arxiv.org/abs/0804.4383
http://home.dei.polimi.it/pradella

Specifying and Verifying Sensor Networks: An
Experiment of Formal Methods

Jin Song Dong1, Jing Sun2, Jun Sun1,	, Kenji Taguchi3, and Xian Zhang1

1 School of Computing,
National University of Singapore

Tel.: +65 6516 4244; Fax: +65 6779 1610
{dongjs,sunj,zhangxi5}@comp.nus.edu.sg

2 Department of Computer Science,
The University of Auckland

j.sun@cs.auckland.ac.nz
3 Information Systems Architecture Research Division,

Grace Center, National Institute of Informatics

Abstract. With the development of sensor technology and electronic miniatur-
ization, wireless sensor networks have shown a wide range of promising applica-
tions as well as challenges. Early stage sensor network analysis is critical, which
allows us to reveal design errors before sensor deployment. Due to their distin-
guishable features, system specification and verification of sensor networks are
highly non-trivial tasks. On the other hand, numerous formal theories and analysis
tools have been developed in formal methods community, which may offer a sys-
tematic method for formal analysis of sensor networks. This paper presents our
attempt on applying formal methods to sensor network specification/verification.
An integrated notation named Active Sensor Processes is proposed for high-level
specification. Next, we experiment formal verification techniques to reveal design
flaws in sensor network applications.

1 Introduction

With the development of sensor technology and electronic miniaturization, sensor in-
tegration makes it possible to produce extremely inexpensive sensing devices. The
sensors have been equipped with significant processing, memory, and wireless commu-
nication capabilities. Thus, they are capable of performing complex in-network com-
putation besides sensing and communication. Wireless sensor networks have shown a
wide range of promising applications in a variety of domains [12], e.g., environmental
monitoring, acoustic detection, smart spaces, inventory tracking, etc.

In recent years, a number of sensor devices and sensor programming languages have
been actively developing [1,4,20]. In the following, we review several features of ad hoc
and sensor networks which distinguish them from ordinary systems. In general, sensor
networks may be categorized as event-based distributed reactive hybrid systems.

� Corresponding author.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 318–337, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 319

– The nature of sensors is event-based. Sensors’ behaviors are often stated in terms of
how they respond to internal/external events. Sensors may have continuous inter-
faces for sensing/actuating as well as discrete message input/output for inter-sensor
communication.

– Sensor networks may be re-configurable, i.e., part of the behaviors may be updated
dynamically. Deployed sensors may need to be updated with new programs to cope
with new system requirements or reused for completely new tasks.

– Sensor network applications are unlikely interested in the state of an individual
sensor. Rather, applications focus on the data generated by sensors. Sensor network
nodes are data-centric. There may not be a unique global address (like IP in the
Internet) associated with each sensor. The data generated at a sensor node is named
by attributes and applications request data matching certain attribute values. Date-
centric routing is favored over end-to-end routing.

– Sensor networks are application-aware. Traditional networks are designed to
accommodate a wide variety of applications. Sensor networks are however
application-specific, i.e., they are configured and deployed for a specific applica-
tion. Thus, they are designed with the knowledge of the types of sensors, the geog-
raphy, the data format generated by the sensors, etc.

On one hand, early stage analysis of sensor networks is critical as, once deployed, sen-
sors may not be easily accessible and updated with corrections. The unique features
of wireless sensor networks present unique challenges for specification, verification
and synthesis. On the other hand, numerous formal theories (e.g., broadcasting mes-
sages [25], higher-order processes [30], mobile processes [5]) and tools (e.g., UPPAAL,
SPIN) have been developed. We believe that wireless sensor networks are a fruitful
application domain of formal methods, which shall provide methodologies as well as
tools for systematic sensor networks specification and verification. This paper presents
our initial attempt on applying formal methods to sensor networks.

In order to apply the rich set of formal methods and theories, the very first task
is to construct a formal description of sensor networks. A formal system description
requires construction of a high-level mathematical model of the system, which can
later be used for a variety of system analysis tasks such as simulation, verification,
performance evaluation and synthesis. In this paper, we adapt ideas from multiple ex-
isting formal specification languages [23,25,6] and propose a simple integrated notation
for formal sensor network specification, namely Active Sensor Processes (shortened as
ASP). ASP is based on classic process algebras with extensions solely for hybrid broad-
casting systems. Next, we demonstrate how to verify sensor network applications using
state-of-the-art verification techniques. Verification based on ASP (instead of concrete
implementation) allows us to focus on the key aspects of the application without being
disturbed by irrelevant details. For instance, it is desirable to prove the soundness of the
high-level specification of a wireless routing protocol (i.e., a package will reach the des-
tination provided that it is feasible) assuming reliable a link layer protocol. Performed
early in the design stage, such modeling and analysis offers the promise of a system-
atic approach. We show that using existing system analysis tools, previously unknown
design flaw can be revealed. Nonetheless, we show that systematic sensor network ver-
ification may require verification capability beyond existing techniques and tools.

320 J.S. Dong et al.

As for related works, the research on sensor networks has been influenced by both the
traditional network community and the database community. The former group tends
to focus on finding efficient communicating protocol [32,17]. The latter focuses on
in-network data aggregation and data querying [8,22]. Other works include building
sensor hardwares and their middleware support [20]. There have also been proposals
for domain specific languages which present programming models for writing sensor
network programs [4,22]. We believe formal methods community can contribute to the
development of sensor network systems by providing new modeling and design tech-
niques capturing high level system behaviors. To our best knowledge, there have been
few formal languages proposed for generic sensor network modeling [24,31]. The pre-
vious closest to ASP is the notion of SensorML [3], which offers a modeling language
for sensor processes. Comparing to SensorML, our language models the dynamic be-
haviors of sensor networks. ASP has a formal semantics, which is essential for formal
analysis. For instance, by translating a large subset of ASP to equivalent timed automata,
we may reuse existing model checkers for formal verification. There have been many
languages proposed for modeling hybrid or mobile reactive systems, e.g., Ambients,
KLAIM, TCOZ, various extensions to π-calculus or automata, etc. However, applying
existing formalisms may not be possible or optimal because of the unique features of
sensors. For instance, the classic CSP, CCS, π-calculus and Ambient calculus rely on
single communication mechanism (e.g., lock-step synchronization between processes),
which is not suitable for inter-sensor communication. Naturally, there are different ways
of communication in sensor networks, i.e., the sensing/actuating may be continuous
rather then discrete; the messaging between sensor nodes are asynchronous as well as
broadcasting; and there may be lock-step synchronization between processes running
in parallel which reside at the same sensor node. Moreover, the network topology in
sensor networks is highly dynamic, which depends on a lot on the geographic location
of the sensor and its own characteristics like radio range. Existing formal specification
languages, like π-calculus and Ambient calculus, support network dynamic reconfigu-
ration by explicitly changing the channel names or the residing location of a process and
thus are in-effective for modeling data-centric sensor network routing. Nonetheless, we
believe wireless sensor networks are a fruitful domain for the scattered works on theo-
retical development on communication as well as process semantics (e.g., broadcasting
semantics, higher-order processes and others as evidenced in [24,25]).

The remainder of the paper is organized as follows. Section 2 explains the constructs
of ASP using illustrative examples. Section 3 explains the semantics of the language.
Section 4.1 models and verifies (using existing tools) a network code propagation algo-
rithm. Section 4.2 studies modeling and verification of a class of sensor network routing
protocols. Section 5 concludes the paper and reviews related works and future works.

2 Specifying Sensor Networks

The objective is to construct a concise and precise model of the sensor nodes. In order
to facilitate later system analysis, the language is designed to be lightweight. In this
section, we present the notation named Active Sensor Processes. We remark that ASP

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 321

P ::= Stop | Skip – deadlock and termination
| Idle(d) – delay
| e → P – event-prefix
| x := exp → P – assignment
| P ; Q – sequential composition
| P � Q – choice
| P � b � Q – conditional branching
| P � Q – interrupt
| P |[X]|Q – local synchronous composition
| s � x → P – sensing
| s ⊗ v → P – actuating
| c?X → P – inter-sensor message input
| c!X → P – inter-sensor message output
| P = Q – process referencing

Fig. 1. ASP Process Syntax

adapts features from Timed CSP [27] and TCOZ [23] and then extends it with language
constructs which are dedicated to sensor networks.

For simplicity, we distinguish three types, i.e., the set of all data values V , the set
of all events E and the set of all processes P . The specification of a sensor node con-
tains two parts. One is the mapping of a set of data variables to their values. The other
is the mapping of a set of process variables to process expressions. Unlike traditional
CSP/CCS, processes are allowed to be re-defined dynamically so as to model sensors
which are designed to be reconfigurable. This is achieved by assigning a process ex-
pression to process names dynamically, in the same way new values are assigned to data
variables. Data variables identify the context of the node, which may be categorized into
two groups. The first group is a set of pre-defined control variables which determines
the network topology. For instance, one way to capture the network topology is through
two predefined variables, namely location and range. Variable location identifies the
location of the sensor node. Variable range identifies its radio range, which in terms
identifies all connected sensor nodes together with the variable location . The second
group is a set of local data variables, e.g., control variables, sensed data store, etc. A
process expression is formed by the syntax summarized in Figure 1. In the following,
we will briefly review the process constructs using illustrative examples. A number of
process constructs introduced in CSP and Timed CSP are reused. Note that some have
different semantics.

The process Skip terminates successfully. The process Stop deadlocks. A sensor
node which behaves as Stop (if the battery runs out or the antenna is broken) disappears
from the network since it can not communicate with the rest of the system any more.
The process Idle(d) where d is a positive real number idles for exactly d time units. A
sensor node behaving as Idle(d) may go to sleep mode or power off (to save energy).
In contrast to sensors which behave as Stop, the sensor wakes up after exactly d time
units or responding to some interrupts. Note that clocks, as data variables, are always
local to a sensor node. The process e → P is called event-prefixing. It engages e and
then behaves as P , where e is an abstract event. If the event is shared by multiple

322 J.S. Dong et al.

processes running in parallel residing at the same sensor node, the event acts like a
synchronization barrier. Local variables or processes may be updated by assignments
of the form x := exp where exp is an expression.

Diversity of behaviors are specified using choices, which are often guarded with
events or Boolean conditions. Process a → P � b → Q will proceed as specified by
P if a is firstly engaged. A conditional branch is written as P � b � Q , where b is a
Boolean expression over the sensor’s context. It behaves as specified by P if b evaluates
to true, otherwise it behaves as specified by Q . We view interrupt as a biased choice.
The process P � e → Q behaves as P until the moment e is engaged and then behaves
as Q afterward. Alphabetized parallel composition is written as P |[X]|Q , where X
is a set of events. Events in X must be synchronized by P and Q . X is omitted if it
is exactly the set of common events of P and Q . Recursion is defined through process
referencing. Its semantics is defined as Tarski’s weakest fixpoint as in CSP [16].

Sensor nodes may communicate with its local continuous environment via sensing
or actuating. A sensor node can sense data from its ever changing environment so as to
detect certain phenomenon or to be aware of its context. The process s - x → P reads
the value x from a sensing channel s from the environment. If the external environment
is specified as a continuous function, the object ‘monitors’ the value of the continuous
function through s . Sensor nodes with the same sensing device may receive the same
datum from the external environment. There may be multiple sensing channels on one
sensor node. Different sensing channels may be dedicated to different phenomenons.
The data sensed by a sensor node may come from the external environment or another
sensor node in the system. Sensor nodes influence its environment through actuating.
Process s⊗v → P actuates value v continuously to the environment. A sensing channel
and an actuating channel match if they share the channel name.

Example 1. A light sensor of a camera detects the light condition and outputs the light
level continuously. The camera reads the light level regularly so as to update the screen1.

LightSensor
Main = Idle(2); daylight - x → illumination ⊗ x → Main

where daylight is a sensing channel and x is the sensed value. The process Main iden-
tifies the behaviors of the object after initialization (as in TCOZ [23]). After sensing
the day light level from the environment, its value is actuated on channel illumination.
The process repeats after 2 time units.

Display
value = 0
Main = illumination - x →

(Main � value = x � refresh → value := x → Main)

where value is a data variable recording the current light level. Its initial value is 0.
refresh is the event of refreshing the screen. The above defines a local display device.

1 We use a Z-schema like syntax to group components of a sensor node. It by no means implies
that we adapt the Z syntax and semantics.

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 323

It reads the value of illumination through sensing. If the value is different from the
previous one, the screen is refreshed to show the new value, else the screen is not re-
freshed. Thus, the illumination displayed is in real-time. Initially, 0 is displayed. Chan-
nel daylight connects the system with the external environment as there is no matching
sensing channel named daylight . �

As shown above, the specification of one sensor node contains a set of mapping from
data/process variables to their value. The initial values identify the initial state. The
process Main identifies the behavior of the node. Sensor nodes which form a network
must communicate with each other, e.g., typically through radio transmission. There are
unique characteristics about inter-sensor messaging. First of all, messaging between
different nodes is almost always asynchronous because processing time per bit com-
municated is plentiful in sensor networks, i.e., CPUs are fast and bandwidths are low.
Depending on the communication media and the transfer rate, it may take considerably
long time. Secondly, there may not be a global identity for each sensor and thus end-
to-end communication is unlikely in sensor networks. Thus, broadcasting is favored in
sensor networks instead of messaging through channels shared by a pre-determined set
of processes (as in CSP [16]).

c!X → P – output
c?X → P – input

where c is a channel. The message content X , which is called a gradient , could be an
abstract event or a data message or even a process itself. We assume that the output is
broadcasted so that all sensors within the range may receive it. Yet only those intended
ones may process it. A receiving sensor node may only listen on channels of its own
interest. A gradient is always treated as a single parameter, and its syntax and how it
is evaluated should be defined by a designer of the system and be incorporated into the
operational semantics.

Example 2. Suppose the sensors have been deployed around a volcano (e.g., they are
thrown from an aircraft) so as to monitor the volcano activity. The sensors report
through radio whenever the sensed temperature is above certain threshold. Due to the
rising of temperature, we now want those sensors which sensed high temperature to
report more frequently. Thus, a station is set up near the volcano, which is modeled as
follows,

Station
Main = c!set(5, 20) → Main

where c is a channel, set is a message tag and (5, 20) is a compound message in a
pre-agreed format. The first number identifies the intended receivers and the second
is used to update the frequency. A channel can be implemented on a separate port or
radio frequency or as simple as a flag bit in the message package. The station repeatedly
broadcasts the message. The sensors are designed as follows,

324 J.S. Dong et al.

Node
delay = 5
data = 0
Routine = Idle(delay); temperature - x → data := x → Routine
Update = c?set(threshold , x) → (delay := x → Update

� data > threshold � Update)
Main = Routine ‖ Update

where delay is a local variable used to control sensing frequency and data is used to
store the most recent sensed data. The Main process is composed two sub-processes
running in parallel. Process Routine executes a routine task, i.e., after idling for delay
time units, collects temperature data from the environment and then store the sensed
data into variable data. Process Update awaits for messages from the station. Once
a message arrives on channel c, if the newly sensed data is above the threshold , the
newdelay is adapted. Otherwise, process Update is repeated.

The above design relies on a pre-defined message format, which is acceptable since
sensor networks may be application specific. Alternatively, instead of updating one pa-
rameter of a process in a pre-determined way, a flexible sensor may be designed to
be reconfigurable so that its behavior can be changed dynamically to cope with differ-
ent tasks. The following shows such an approach based on the notion of higher-order
processes, i.e., a message can be a process itself.

ReconStation
Sender = c!set(110, Idle(20)) → Sender

The sender sends a piece of program, i.e., Idle(20), to directly change the behaviors
of the sensors. A re-configurable sensor is designed as follows,

ReconNode
data = 0
Recon = Idle(5)
Routine = Recon; temperature - x → data := x → Routine
Update = c?set(threshold ,X) →

(Recon := X → Update � data > threshold � Update)
Main = Routine ‖ Update

where Recon is defined as a process variable. Routine is to execute Recon first fol-
lowed by sensing. Notice that whenever a process reference (e.g., Recon) is invoked, it
is replaced by its current value. Once a new piece of program is received, the value of
Recon is updated by an assignment. �

There are two levels of concurrency in sensor networks. Firstly, local processes of a
sensor node or computation devices connected by wire where communication delay
is ignored can execute concurrently with possible barrier synchronization. Secondly,
different sensor nodes run independently with each other and communicate through

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 325

message passing. The parallel composition of local processes located at the same sensor
node is denoted as P |[X]|Q where common events of ΣP and ΣQ are synchronized.
All sensor nodes are implicitly executing in parallel and the communication between
different sensor nodes is through asynchronous message passing2.

Example 3. Because inter-sensor messaging may take considerably long time, it is of-
ten desirable to have separate processes for local computation and interfacing so that
local computation carries on without being delayed by message sending or receiving.
The following shows such a design,

SampleNode
average = 0
n = 0
Accumulate = data - x → average := (average × n + x)/(n + 1) →

n := n + 1 → Idle(2); Accumulate
Interface = sink !average → Interface
Main = Interface ‖ Accumulate

where n is a counter. Process Interface handles communication (with a data sink). It
repeatedly reads the average and then sends it out. Process Accumulate collects data
from the environment. It gets the value of data through sensing. It then computes the
new average. After idling for 2 time units, process Accumulate is invoked again. �

Complex process constructs can be composed from the simple ones. For instance, a
process that times out after some time units is written as P �d Q . The process Q takes
control from the process P if P has not made a move after d time units elapsed, i.e.,
P �d Q is equivalent to P � (Idle(d); Q). A process that is interrupted after executing
exactly d time units is written as P �d Q . The process Q takes control from P after
d time units, i.e., P �d Q is equivalent to P � (Idle(d); Q). [b] • P is a guarded
process which behaves as P when b is evaluated to true, i.e., [b] • P =̂ P � b � Stop.
Since they are considered as syntax sugars, we skip the rest for brevity.

3 Operational Semantics

In this section, the operational semantics of ASP is explained. The configuration of
a node is composed of two components, i.e., the current process expression and the
binding of data/process variables to their current values. Given a set of sensor nodes,
the local state of each sensor node constitutes the global configuration.

Let B be a binding, which maps data variables to a data values or process
variables to process expressions. Let P be a process. A configuration of a node
is a pair of the form (P ,B). The global state of a network of n nodes is
{(P1,B1), (P2,B2), · · · , (Pn ,Bn)}, i.e., the configuration of all sensor nodes. For sim-
plicity, we write (P1,B1) ||| (P2,B2) to denote that (P1,B1) and (P2,B2) are part of

2 Nearby sensors may interact through sensing/actuating.

326 J.S. Dong et al.

the global state3, i.e., there are a node with configuration (P1,B1) and a node with
configuration (P2,B2) running in parallel. In the previous examples, the initialization
consists of a set of equations of the form name = initial value. The initial state of
a node is (Main,BInit) where Main is the main process and BInit is the binding
of all variables with their initial values. The following action prefixes are defined as
abbreviations.

α ::= s - v | s ⊗ v
β ::= c?v | c!v
λ ::= e | τ | �
a ::= α | λ

where τ is the event of idling and � is the event of termination. The operational seman-
tics is presented using a set of transition rules associated with the language constructs.
A transition is of the form (P ,B)

a
↪→ (P ′,B ′), which denotes that a process P with a

binding B performs an action a and evolves to a new process P ′ and a new binding B ′.
A new binding of a variable x to v in B is denoted by B ⊕ {x �→ v}, i.e., the old value
of x is replaced by v .

Inspired by the operational semantics defined in [26] for Timed CSP, we extend the
rules with a component B to cope with our setting, as presented in Appendix A. We
remark that �, |[X]| and ||| are symmetric. Because of the shared variables, rules
in [26] are extended to capture semantics of operators which deal with variables. Fig-
ure 2 presents those transitions rules. Rule Assign states that an assignment replaces
the value of variable x with eval(B , exp) which is the value of exp evaluated against
binding B . We remark that x may be a process variable and exp may be a process
expression. Rule Con1 and Con2 capture the semantics of conditional branching. If
the the condition b is true, written as B |= b, the system proceeds as P . Otherwise,
it behaves as Q . Timing information is important in modeling (and verifying) sensor
networks. We adapt a simple explicit-time approach, i.e., a variable time is used to
represent the current time [18]. Rule Idle1 and Idle2 captures how process Idle(d) be-
haves. Notice that the behaviors of the clock are modeled implicitly as a process which
updates the variable time. Rule ProcDef deals with process referencing. The idea is to
load the definition of P dynamically from B .

In order to capture the semantics of sensing/actuating, we introduce discard ac-
tions. Discard actions are defined as α :. The discard action (P ,B)

α:
↪→ (P ,B) means

that P discards the action α. Figure 3 shows rules associated with sensing and ac-
tuating. These are based on CBS (Calculus of Broadcasting Systems) in [25] except
rule DiscardSensing . Rule DiscardSensing means that any node with the same sensor
name may not receive the data from the environment or some corresponding actuator.
This rule can mimic the locality of sensors. We regard the set of rules which includes
Sensing, DiscardSensing, SAParallel and other discard rules (which only take the dis-
card sensing action) the sensor process calculus, which captures the behaviors of sen-
sors receiving data only from the environment. This set of rules is semantically weak
but models how sensors behave in general.

3 The operator ||| denotes interleaving in CSP. Here it implies there is no barrier synchronization
among different sensor nodes.

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 327

eval(B , exp) = v
[Assign]

(x := exp → P ,B)
e

↪→ (P ,B ⊕ {x �→ v})

B |= b (P ,B)
λ
↪→ (P ′,B ′)

[Con1]

(P � b � Q ,B)
λ
↪→ (P ′, B ′)

B �|= b (Q ,B)
λ
↪→ (Q ′,B ′)

[Con2]

(P � b � Q ,B)
λ
↪→ (Q ′,B ′)

{time �→ n} ⊆ B d > m
[Idle1]

(Idle(d),B)
τ

↪→ (Idle(d −m),B ⊕ {time �→ n + m})

{time �→ n} ⊆ B
[Idle2]

(Idle(d),B)
�
↪→ (Stop, B ⊕ {time �→ n + d})

{P �→ Q} ⊆ B (Q ,B)
λ
↪→ (Q ′,B ′)

[ProcInst]

(P ,B)
λ
↪→ (Q ′,B ′)

P = Q (Q ,B)
λ
↪→ (Q ′,B ′)

[ProcDef]

(P ,B)
λ
↪→ (Q ′,B ′)

Fig. 2. Basic Operational Rules

Similarly, we define the rules for inter-sensor communication. All the rules for inter-
sensor messaging, presented in Appendix B, are based on CBS but we need to take
care of gradient. The syntax of gradients and how they will be evaluated should be
pre-defined by a specifier of a sensor network system.

4 Case Studies

In this section, we demonstrate how ASP can be applied to model real-world sensor
network applications concisely. Next, we discuss sensor network verification based on
the ASP models. We show that using existing model checkers, bugs which are not pre-
viously known may be detected. Yet existing verification tools and techniques may not
be sufficient in general.

4.1 The Trickle Algorithm

Communication in sensor networks may be extremely costly (in terms of time and bat-
tery). For some applications, sending a data of tens of kilobytes can have the same cost
as days of operation. Thus, code propagation by flooding is undesirable. The Trickle
algorithm [21] is a self-regulating algorithm for code (or large datum) propagation and

328 J.S. Dong et al.

[Sensing]

(s � x → P ,B)
s�v
↪→ (P ,B ⊕ {x �→ v})

[Actuating]

(s ⊗ v → P ,B)
s⊗v
↪→ (P ,B)

[DiscardActuating]

(s⊗v → P ,B)
s⊗v:
↪→

[DiscardSensing]

(s � x → P ,B)
s�v:
↪→

(P ,B1)
s�v
↪→ (P ′,B ′

1) (Q ,B2)
s⊗v
↪→ (Q ′,B2)

[SACom(1)]

(P ,B1) ||| (Q ,B2)
s⊗v
↪→ (P ′,B ′

1) ||| (Q ′,B2)

(P ,B1)
s⊗v
↪→ (P ′,B1) (Q ,B2)

s�v
↪→ (Q ′,B ′

2)
[SACom(2)]

(P ,B1) ||| (Q ,B2)
s⊗v
↪→ (P ′,B1) ||| (Q ′,B ′

2)

(P ,B1)
s�v
↪→ (P ′,B ′

1) (Q ,B2)
s�v
↪→ (Q ′,B ′

2)
[SAParallel]

(P ,B1) ||| (Q ,B2)
s�v
↪→ (P ′,B ′

1) ||| (Q ′,B ′
2)

(P ,B1)
α:
↪→ (Q ,B2)

α:
↪→

[SAJoinDiscard]

(P ,B1) ||| (Q ,B2)
α:
↪→

(P ,B1)
α:
↪→ (Q ,B2)

α
↪→ (Q ′,B ′

2)
[SADiscard(1)]

(P ,B1) ||| (Q ,B2)
α
↪→ (P ,B1) ||| (Q ′, B ′

2)

(P ,B1)
α
↪→ (P ′,B ′

1) (Q ,B2)
α:
↪→

[SADiscard(2)]

(P ,B1) ||| (Q ,B2)
α
↪→ (P ′,B ′

1) ||| (Q ,B2)

Fig. 3. Sensor-Actuator rules

maintenance in wireless sensor networks. It combines typical sensor network behav-
iors like broadcasting, higher-order processes, etc. The sensors are designed to be re-
configurable, i.e., the received code will be installed and executed. It uses a “polite
gossip” policy. Each node announces its metadata (e.g., a version number) every few

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 329

Mote
data = 0
version = 0
counter = 0
threshold = 2
timer = 2
tau = 5
Routine = sense � x → data := x ; Idle(5); Routine
Update = c?pro(v , R)→ ((version := v ; Routine := R; Update)

� version < v � Update)
Gossip = (Talk || Reply) �tau counter := 0; Gossip
Talk = Idle(timer); (meta!version → Talk � counter < threshold � Talk)
Reply = meta?x → ([x = version] • counter := counter + 1; Reply �

[x > version] • meta!version → Reply �

[x < version] • c!pro(version, Routine) → Reply)
Main = Routine ‖ Update ‖ Gossip

Fig. 4. The Trickle Algorithm

time units. If a node hears an old metadata, it broadcasts the code necessary to update
the node sending the old metadata. If it hears a new metadata (e.g., a larger version
number), it broadcasts its own metadata, which triggers the receiver to send the up-
dated program. To reduce the number of communication, each node announces only
a limited number of times during each gossip. Through time, a network of thousands
of sensor nodes shall be updated with the new code. The algorithm has been evaluated
with extensive simulation in [21].

The modeling is presented in Figure 4. The main process of each sensor node (called
mote in [20]) consists of three components running in parallel. Process Routine, which
is reconfigurable, performs the routine task. Process Update updates the node if an up-
dated version of Routine has been received. Process Gossip models the “polite gossip”
policy which is used to discover whether the node is outdated or not. In order to keep
the mote up-to-date, a mote records a number of parameters, i.e., version records the
version of Routine, a counter, a threshold, a timer and a constant tau . Process Routine
periodically senses data from the external environment. Process Update keeps waiting
for an input on channel c (with message tag pro). Once such a gradient is received, both
version and Routine are updated if the received code is newer. Process Gossip cap-
tures the essence of the algorithm. The mote announces its current version on channel
meta once a while (specified by Talk) or it listens to other motes and reacts (spec-
ified Reply). In the process Talk , after t time units, the mote checks if it has talked
too much (counter ≥ threshold). If it has, the mote will keep silent until the next
gossip. Otherwise, it will broadcast its version on channel meta and wait for the next
turn to talk. Every tau time units, the process restarts (and resets the counter). In the
process Reply , when a mote hears a version identical to its own (x = version), it
increments counter . If the mote hears a version greater than its own (x > version),
it broadcasts its own version, which will trigger a receiver to send the updated pro-
gram. If the mote hears an old version, it broadcasts the code necessary to update the
sending mote.

330 J.S. Dong et al.

We believe that formal specification is a starting point for a number of formal analysis
tasks. It is natural to ask whether this algorithm satisfies important safety and liveness
properties. In this experiment, we reuse existing state-of-the-art verification support for
real-time systems (e.g., UPPAAL [19]) to reason about the algorithm. In order to model
check the algorithm, we must first close the system by explicitly specifying the environ-
ment. The following components are part of the environment, i.e., the network topology,
the different versions of Routine and the external data resource from which the sensor
nodes collect data. As discussed above, the network topology may be specified using
pre-defined variables (e.g., location and range). There is a link between two nodes if
and only if the nodes are within each other’s range. In UPPAAL, however, processes
communicate only through pre-defined channels. Thus, we need to pre-process the net-
work topology and define channels for each link between the nodes, which is statically
done given the values of the variables are not changing. One feature which is missing
from timed automata is higher order processes. To the best of our knowledge, there are
few tools which support verification of higher-order processes. Thus, higher-order pro-
cesses are reduced to ordinary processes whenever the system is closed. This may not
be always desirable or possible. For this experiment, because the details of Routine are
irrelevant, we simply abstract it away. In UPPAAL, timed automata are extended with
broadcasting channels and committed states, which can be used to mimic broadcasting
in ASP. Because the sensed data is irrelevant, it is simply ignored.

In our previous work, we have developed a systematic translation from Timed CSP
to timed automata [10]. We defined a rich set of compositional operators for timed au-
tomata, which corresponds to the compositional operators in Timed CSP. By following
the same approach, we develop a systematic translation from ASP to timed automata.
Figure 5 presents the generated automata. Automaton (a) corresponds to the process
Update. Because passing data through channels is not allowed in UPPAAL, we use
shared variables to communicate instead, i.e., message sending writes a shared vari-
able whereas message receiving reads the value. The state after the synchronization is
marked as urgent so as to read the input value immediately. The parallel composition
of automaton (b) and (c) corresponds to process Gossip. Adapting the timed patterns
defined in [10], the timed interrupt �tau has been resolved using extra state invariants
and transition guards. For instance, automaton (b) which loosely corresponds to process
Talk is modified to guarantee that whenever x == tau , the system is restored to the
initial state. Automaton (c) loosely corresponds to process Reply .

Table 6 shows the experiment results using UPPAAL to verify instances of the
algorithm. The network topologies are randomly generated with one constraint, i.e., all
nodes are reachable. The results are obtains by executing UPPAAL 4.0.6 on Windows
XP platform with Intel Core Duo 2.33GHz CPU and 3.25 GB memory. All models are
deadlock-free as expected. A desired property of code propagation algorithms is that if
a node is reachable, it will always eventually be updated. A counterexample is produced
unexpectedly. Figure 7 elaborates the counterexample with a network containing 3
motes connected circularly. The link between nodes are directed as it is possible that
node B hears A but node A cannot hear from B , e.g., A has a longer radio range.
Initially, node A’s version is 1, meaning that it is updated already. Once node A hears
a meta-data from node C , it broadcasts its updated program. Only node B hears from

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 331

version:= input

c?

(a)

y<=timer && x<=tau

y==timer && counter<threshold && x<taumetas!
input:=version

x==tau
counter:=0,x:=0

y==timer &&
counter>=threshold && x<tau

y:=0

(b)

x<=tau

x<=tau

x<=tau

x<=taux:=0

x==tau counter:=0,x:=0

x==tau
counter:=0,x:=0

x==tau counter:=0,x:=0

x==tau
counter:=0,x:=0

x<tau c!

input3:=version

x<tau
metas1!
input2:=version

x<tau

input1<version && x<tau

input1>version && x<tau

input1==version && x<tau
counter:=counter+1

metas?

(c)

Fig. 5. UPPAAL Model of the Trickle Algorithm

Model Property time taken Result
2 Motes deadlock-free < 1 true
3 Motes same above 1 true
4 Motes same above 12 true
5 Motes same above 1080 true
6 Motes same above − true
2 Motes always-eventually all motes are updated < 1 true
3 Motes same above 1 false
4 Motes same above 3 false
5 Motes same above 25 false
6 Motes same above − −

Fig. 6. Verifying Randomized Sensor Networks using UPPAAL

node A and thus node B is updated. Consequently, node C broadcasts its meta-data ev-
ery time after receiving meta-data from node B and then node A broadcasts the updated
program every time after receiving the meta-data from node C . However, because only
node B receives from node A and it ignores the message since it has already been
updated. As a result, node C is never updated. Notice that the property is true if all links
are bi-directional or each node has fixed location and radio range. In order to prove the
latter, we can show that if B hears A and A cannot hear from B , then the range of A

332 J.S. Dong et al.

rangeA rangeB

rangeC

A B C
1 0 0

rangeA rangeB

rangeC

A B C
1 01

==>

Fig. 7. A Counterexample

must be larger than that of B . Thus, a circular network like the one in Figure 7 is not
possible. Nevertheless, such network topology is possible in practice.

For a network with 6 motes, UPPAAL needs significant amount time to verify the
property. A typical sensor network application, however, may contain hundreds or thou-
sands of sensor nodes. Observing that some distinguishable features are missing from
UPPAAL (e.g., higher-order processes), this suggests that specialized verification mech-
anism and state space reduction techniques must be developed.

4.2 Face Routing Protocols

In this experiment, we review another example of sensor network application. We argue
that current formal verification tools may not be sufficient to provide answers to natural
questions on those systems.

Geographic routing algorithms are an important family of routing protocols of wire-
less ad hoc sensor networks. They have been shown to scale better than other alterna-
tives, i.e., they require per node state that depends only on network density and not on
network size. Established proposals include GFG [2], GPSR [17], etc. However, due to
different forwarding mechanism, reachability between sensor nodes is not always guar-
anteed. In many of these algorithms (e.g., [17]), nodes forward packets to the neighbor
closest to the destination whenever possible. The following process models the relevant
behaviors of a node in the simplest greedy routing protocol.

Main = c?new(src, des ,msg) →
([loc = des] • message := msg; Skip �

[src − des > loc − des] • c!new(loc, des ,msg) → Main �

[loc − des � src − des] • Main)

where loc is the location of the node and message is a local data store recording the
message received. In what follows, we assume that each node acquires its own posi-
tion using GPS devices (as assumed in [17]). Without loss of generality, location is
abstracted as a natural number. The message is composed of three parts, i.e., src is
the location of the sender, des is the location of the intended receiver and msg is the
message content itself. Each node tries to forward the message to its neighbors who are
geographically closer to the destination than the node itself (i.e., src−des > loc−des).
If the location of the sensor is the same as the destination, it means that message has
reached the destination. If the sensor is not the destination and it is closer to the des-
tination than the the sender, it would go on broadcasting the message with the sender
location replaced by its own location. Otherwise it will discard this message. In [17], a
simple beaconing algorithm provides all nodes with their neighbors’ positions: periodi-
cally, each node broadcast a beacon which its own identifier and position. For simplicity,

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 333

we skip the modeling of the beaconing algorithm and assume that the messages are al-
ways broadcasted in the above modeling. Nonetheless, this modeling shares the same
pitfall with the one in [17].

A critical requirement for any routing protocol is that, given a static network topol-
ogy and reliable link layer support, the protocol must guarantee message delivery to a
reachable node. It has been shown that message delivery is not always guaranteed for
face routing algorithms [13]. For instance, there are topologies in which the only route
to a destination requires a packet move temporally further in geometric distance from
the destination, due to the presence of routing holes. Refer to [13] for more compli-
cated protocols as well as pitfalls. Given a newly designed protocol, it is thus desirable
to answer the question whether there exists a network topology such that the proto-
col does not function as expected. Different from traditional model checking, a model
satisfying different constraints including temporal logic properties (e.g., always eventu-
ally the message is delivered) must be constructed and presented as a counterexample.
This problem may be categorized as a model satisfiability problem. Because it concerns
temporal logic constraints, bounded model checking techniques must be applied.

One solution is to formula the question as a Boolean formula and then apply state-
of-the-art SAT-solvers to generate solutions automatically. In our previous work [29],
we have developed ways of encoding compositional processes as SAT problems for
bounded model checking. By applying a similar approach, our primary experiments
show that for face routing protocols, not only we can prove/disprove desirable proper-
ties given a network topology but also generate one particular network topology which
makes the given algorithm faulty. Given a bound on the number of nodes, and the data
range of the pre-defined variable location and range (which identifies the network
topology), a fixed number of Boolean variables are used to represent status of each
node. The behaviors of each node can be translated to a labeled transition system (by
applying the operational semantic) and then encoded as a Boolean formula in the stan-
dard way [9]. The encoded sensor nodes are composed using a similar approach pro-
posed in [29]. After composing with the Boolean formula which represents the property
(e.g., if there is a path from the source to the destination, then the message must always
eventually reach the destination), an SAT-solver is used to assign true/false value to
all Boolean variables. An assignment to the variables representing location and range
identifies a network topology in which the protocol can not guarantee message deliv-
ery. In the above example, we have successfully generated connectivity graphes which
contains routing holes. We are currently extending our tool [29] to fully automate the
process. We have implemented and experimented a number of face routing protocols
(like the above one and GFG). However, because of the size of sensor network appli-
cations, our prototype implementation must be extended with partial order reduction as
well as symbolic techniques before practical usage.

5 Conclusion

In this paper, we proposed a high-level formal specification language specifically for
wireless sensor networks. Unique language constructs have been defined to cope with
the unique characteristics of such systems, e.g., sensing and actuating, inter-sensor

334 J.S. Dong et al.

messaging, etc. Next, we developed a formal semantics for ASP. Lastly, we demon-
strated how to use ASP to model sensor network applications as well as how to verify
those models. From the examples, ASP showed its high expressiveness and conciseness
in formally specifying the communications and behaviors of sensor network systems. In
summary, ASP not only offers a way of modelling/specifying sensor networks, with the
precise semantics defined, but also gives us a starting point for formal sensor network
simulation, verification and synthesis.

We are currently developing a series of tools based on ASP. e.g., a high-level simula-
tor, a verifier and a synthesizer (e.g., [28,7,11]). Existing simulators for sensor networks
like TOSSIM and ns-2 mimic physical environment rather closely and thus provide
rich simulation results. Nevertheless, they may not be as abstract as expected by sys-
tem designers who are only interested in the high-level functionality of the system. For
instance, a protocol designer would be firstly interested in if “in theory” the newly de-
signed protocol is free of deadlocks and livelocks and then analysis the performance
of the protocol with realistic settings. We are developing a simulator based on ASP

for high-level simulation, based on the operational semantics presented in Section 3. A
promising technique to handle large number of sensor nodes is the symbolic simulation
proposed in [15]. One in-expensive approach to connect ASP to the current practise
of sensor networks programming is by providing a transformation (which has been
planned) from ASP to languages like nesC which is designed to embody the execution
model of TinyOS [14].

Acknowledgement

This work is partially supported by the research project “Sensor Networks Specification
and Validation” (R-252-000-320-112) funded by Ministry of Education, Singapore.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a
Survey. Computer Networks 38(4), 393–422 (2002)

2. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with Guaranteed Delivery in Ad Hoc
Wireless Networks. Wireless Networks 7(6), 609–616 (2001)

3. Botts, M.: Sensor Model Language (SensorML) (2006),
http://vast.nsstc.uah.edu/SensorML/

4. Boulis, A., Han, C.C., Srivastava, M.B.: Design and Implementation of a Framework for
Efficient and Programmable Sensor Networks. In: Proceedings of International Conference
on Mobile Systems, Applictions, and Services (MobiSys 2003) (2003)

5. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–
213 (2000)

6. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS,
vol. 1378. Springer, Heidelberg (1998)

7. Chen, C., Dong, J.S., Sun, J.: A verification system for timed interval calculus. In: Pro-
ceedings of the 30th International Conference on Software Engineering (ICSE 2008), pp.
271–280. ACM Press, New York (2008)

http://vast.nsstc.uah.edu/SensorML/

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 335

8. Ciancio, A.G., Pattem, S., Ortega, A., Krishnamachari, B.: Energy-efficient Data Representa-
tion and Routing for Wireless Sensor Networks based on a Distributed Wavelet Compression
Algorithm. In: Proceedings of Information Processing in Sensor Networks (IPSN 2006), pp.
309–316 (2006)

9. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

10. Dong, J.S., Hao, P., Qin, S.C., Sun, J., Wang, Y.: Timed Patterns: TCOZ to Timed Automata.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 483–498.
Springer, Heidelberg (2004)

11. Dong, J.S., Hao, P., Sun, J., Zhang, X.: A Reasoning Method for Timed CSP Based on
Constraint Solving. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 342–359.
Springer, Heidelberg (2006)

12. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges: Scalable Co-
ordination in Sensor Networks. In: Proceedings of ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom 1999), pp. 263–270 (1999)

13. Frey, H., Stojmenovic, I.: On Delivery Guarantees of Face and Combined Greedy-face Rout-
ing in Ad Hoc and Sensor Networks. In: Proceedings of the 12th Annual International Con-
ference on Mobile Computing and Networking (MOBICOM 2006), pp. 390–401 (2006)

14. Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D.E.: The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003
(PLDI 2003), pp. 1–11. ACM Press, New York (2003)

15. Goel, A., Meng, S., Roychoudhury, A., Thiagarajan, P.S.: Interacting process classes. In:
Proceedings of the 28th International Conference on Software Engineering (ICSE 2006), pp.
302–311. ACM Press, New York (2006)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

17. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: a Scalable and Robust
Communication Paradigm for Sensor Networks. In: Proceedings of International Conference
on Mobile Computing and Networking (MOBICOM 2000), pp. 56–67 (2000)

18. Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul, W. (eds.)
CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

19. Larsen, K.G., Pettersson, P., Wang, Y.: Uppaal in a Nutshell. International Journal on Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

20. Levis, P., Culler, D.E.: Maté: a Tiny Virtual Machine for Sensor Networks. In: Proceedings
of International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS 2002), pp. 85–95 (2002)

21. Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In: Proceedings of Networked
Systems Design and Implementation (NSDI 2004), pp. 15–28 (2004)

22. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an Acquisitional Query
Processing System for Sensor Networks. ACM Transactions on Database Systems 30(1),
122–173 (2005)

23. Mahony, B., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions on Software
Engineering 26(2) (February 2000)

24. Mezzetti, N., Sangiorgi, D.: Towards a Calculus For Wireless Systems. Electronic Notes in
Theoretical Computer Science 158, 331–353 (2006)

25. Prasad, K.V.S.: A Calculus of Broadcasting Systems. In: Abramsky, S. (ed.) TAPSOFT 1991.
LNCS, vol. 493, pp. 338–358. Springer, Heidelberg (1991)

336 J.S. Dong et al.

26. Schneider, S.: An Operational Semantics for Timed CSP. Information and Computa-
tion 116(2), 193–213 (1995)

27. Schneider, S., Davies, J., Jackson, D.M., Reed, G.M., Reed, J.N., Roscoe, A.W.: Timed CSP:
Theory and practice. Real-Time: Theory in Practice 600, 640–675 (1992)

28. Sun, J., Dong, J.S.: Design Synthesis from Interaction and State-Based Specifications. IEEE
Transactions on Software Engineering 32(6) (2006)

29. Sun, J., Liu, Y., Dong, J.S., Sun, J.: Bounded Model Checking of Compositional Processes.
In: Proceedings of the Second IEEE International Symposium on Theoretical Aspects of
Software Engineering, pp. 23–30. IEEE Computer Society Press, Los Alamitos (2008)

30. Thomsen, B.: Calculi for Higher Order Communicating Systems. PhD thesis (1990)
31. Tschirner, S., Xuedong, L., Yi, W.: Model-Based Validation of QoS Properties of Biomedical

Sensor Networks. In: Proceedings of the International Conference on Embedded Software
(EMSOFT 2008) (accepted, 2008)

32. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active Messages: A Mecha-
nism for Integrated Communication and Computation. In: Proceedings of International Sym-
posium on Computer Architecture 1992 (ISCA 1992), pp. 256–266 (1992)

Appendix A: Basic Operational Semantics

(Stop,B)
τ
↪→ (Stop,B) (Skip,B)

�
↪→ (Stop,B)

(e → P ,B)
e

↪→ (P ,B)

(P ,B)
λ
↪→ (P ′,B ′) λ �= �

(P ; Q ,B)
λ
↪→ (P ′; Q ,B ′)

(P ,B)
�
↪→ (P ′,B)

(P ; Q ,B)
�
↪→ (Q ,B)

(P ,B)
λ
↪→ (P ′,B ′)

(P � Q ,B)
λ
↪→ (P ′,B ′)

(P ,B)
λ
↪→ (P ′,B ′)

(P � Q ,B)
λ
↪→ (P ′ � Q ,B ′)

(Q ,B)
λ
↪→ (Q ′,B ′)

(P � Q ,B)
λ
↪→ (Q ′,B ′)

(P ,B)
λ
↪→ (Skip,B)

(P � Q ,B)
λ
↪→ (Skip,B)

λ �∈ X (P ,B)
λ
↪→ (P ′,B ′)

(P |[X]|Q ,B)
λ
↪→ (P ′ |[X]|Q ,B ′)

e ∈ X (P ,B)
e

↪→ (P ′,B) (Q ,B)
e

↪→ (Q ′,B)

(P |[X]|Q ,B)
e

↪→ (P ′ ‖ Q ′,B)

Specifying and Verifying Sensor Networks: An Experiment of Formal Methods 337

Appendix B: Operational Rules for Inter-sensor Messaging

[BI]
(c?X → P ,B)

c?v
↪→ (P ⊕ {X �→ v},B)

[DisI]
(c?v → P ,B)

c?v :
↪→

[BO]
(c!v → P ,B)

c!v
↪→ (P ,B)

[DisO]
(c!v → P ,B)

c!v :
↪→

(P1,B1)
c!v
↪→ (P ′

1,B1) (P2,B2)
c?v
↪→ (P ′

2,B
′
2) [Broadcast]

(P1,B1) ||| (P2,B2)
c!v
↪→ (P ′

1,B1) ||| (P ′
2,B ′

2)

(P1,B1)
c?v
↪→ (P ′

1,B
′
1) (P2,B2)

c?v
↪→ (P ′

2,B
′
2) [IParallel]

(P1,B1) ||| (P2,B2)
c?v
↪→ (P ′

1,B
′
1) ||| (P ′

2,B
′
2)

(P1,B1)
β:
↪→ (P2,B2)

β:
↪→

[BJointDiscard]
(P1,B1) ||| (P2,B2)

β:
↪→ (P1,B1) ||| (P2,B2)

(P1,B1)
β:
↪→ (P2,B2)

β
↪→ (P ′

2,B
′
2) [BDiscard(1)]

(P1,B1) ||| (P2,B2)
β
↪→ (P1,B1) ||| (P ′

2,B
′
2)

(P1,B1)
β
↪→ (P ′

1,B
′
1) (P2,B2)

β:
↪→

[BDiscard(2)]
(P1,B1) ||| (P2,B2)

β
↪→ (P ′

1,B
′
1) ||| (P2,B2)

Correct Channel Passing by Construction�

Chao Cai1, Zongyan Qiu1, Xiangpeng Zhao1, and Hongli Yang2

1 LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China
{caic,qzy,zxp}@math.pku.edu.cn

2 College of Computer Sciences, Beijing University of Technology,
Beijing 100022, China
yhl@bjut.edu.cn

Abstract. Channel passing is a mechanism to describe dynamic compo-
sition of parallel systems. As to Web services, both WS-BPEL and WS-
CDL adopts this mechanism to support dynamic business processes. Web
service composition may suffer from channel passing, e.g., some service
might not get a correct channel to complete an interaction, and then the
whole system would get stuck. The work presented here is aimed at de-
signing services which are immune to channel problems. Firstly, we define
a pair of model languages on both global and local levels with formally
defined semantics. Based on these languages, we propose a top-down
design methodology that generates local-level processes from a global
specification. Finally, we give out a set of conditions for global specifica-
tions, from which the generated processes are guaranteed correct.

Keywords: Choreography, Orchestration, Channel passing, Web Ser-
vices, Formal Methods.

1 Introduction

Web services promise the interoperability of various applications running on
heterogeneous platforms over the Internet, which have gained increasing atten-
tion. Web service composition refers to the process of combining existing Web
services to offer value-added services to support inter-organization or crossing-
organization business processes.

Two levels of views to the composition of Web services exist, namely orchestra-
tion (local view) and choreography (global view). On one hand, an orchestration
describes interactions from one service (peer) to the others from the view of
this peer, for the implementation of a new service. The de facto standard for
orchestration is WS-BPEL [2]. On the other hand, a choreography abstracts a
category of peers as a role, and focuses on the composition of a group of roles
from a global perspective. Choreography is used to specify business protocols
from a global viewpoint, such that the protocol can be implemented by a group
� Supported by National Natural Science Foundation of China (No. 60603033 and No.

60773161).

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 338–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Correct Channel Passing by Construction 339

of individual distributed peers without a central point of control. WS-CDL [1] is
a W3C candidate recommendation designed for describing service choreography.

Due to the heterogenous nature of Web service composition, it is important
to find a way to describe how different service providers/consumers located in
different places can be (possibly dynamically) connected with each other. The
concept of channel is proposed for this purpose. Channels abstract the commu-
nication mechanism of Web services. A channel is seen as a virtual connection
between two peers for communications. In other words, the only mean to pass
messages in a Web service composition is to use a channel. There are different
terminologies for channel in several languages.

In WS-BPEL, a peer communicates with other peers through partner links. A
partner link is syntactically represented by an endpoint reference, which specifies
where and how to invoke a service. Also, a peer exposes a WSDL [11] interface,
where each endpoint is associated with a network address. In the following of
this work, a partner link is abstracted as a channel variable, while an endpoint
reference as a channel. In WS-CDL, the concept of channel variable is introduced.
A channel variable captures information of a channel.

In an ideal situation, all peers of a business process know the channels that
they will use before the business process starts. When all channels are known
by their users and all the usage of the channels are described statically in the
business process specification, we say that the process has a static communication
structure. Most formal work on service composition adopted this assumption.

However, in the real world applications, the static communication structure
may not be sufficient. In a multi-party business process that involves several
peers, some of these peers may be selected dynamically during the execution by
other peers who have already joined the work. Also, a peer may not take part
in a process until some specific event happens in the execution. If a peer needs
to join the interaction dynamically during the execution and then communicate
and cooperate with the other peers, it has to wait until it obtains some necessary
channels from the peers which are already in the work.

For example, in an online shopping process involving a buyer, a seller and
a shipper, the shipper will not join the process until the deal is agreed by the
buyer and the seller. To complete the business process, the shipper should get the
channel information from, for example, the seller, and then use the information
to contact the buyer. Of course, the channel information must be transferred
through a channel too. The term channel passing means that channel is passed
through a message exchange. Channel passing is critical in supporting complex
business processes.

Both WS-BPEL and WS-CDL include some mechanisms to support the spec-
ification of processes with dynamic communication structures and channel pass-
ing. In WS-BPEL, two ways to initialize a channel variable are permitted. On
one hand, the channel variable can be bound with a channel statically, either
via an assignment in the business process definition, or as part of the process
deployment. On the other hand, it is also possible to bind channel variables dy-
namically. The service could receive a channel from some partner and assign it

340 C. Cai et al.

Fig. 1. Online shopping

to a channel variable at runtime. In WS-CDL, channel passing is syntactically
supported by interactions. Channels can be transferred through interactions, and
then the transferred channels can be used in subsequent interactions.

Figure 1 shows an elaborated description of the online shopping example
discussed above in the form of UML sequence diagram. When the buyer and the
seller agree on the price of the goods, a shipper will be designated to transport
the goods from the seller’s warehouse to the buyer. In this scenario, the shipper
is dynamically selected by the seller according to some factors, e.g., the location
of the buyer, or the quality of goods. Clearly, the chosen shipper has no idea
where the buyer is unless the seller tells her/him the buyer’s contact information,
which can be either a phone number or an address in an off-line transaction. We
will meet similar situation if the shopper is selected by the buyer.

In the Web service environment, the contact information must contain the
information of the contacting channels. Thus the “channel passing” is indis-
pensable. When the channels need to be passed to fulfill the communication
requirement, and the communication structures are dynamically organized, the
business process designers will face new challenges to avoid:

Channel-Absent. They should ensure that each peer can get necessary chan-
nels for its communication. In the example, we need guarantee that the
shipper is able to obtain a channel for its work on the delivery.

Channel-Mistake. They should ensure that each peer uses the correct channel
in every communication. In the example, we must guarantee that the shipper
use the correct channel to contact the desired buyer.

From the theoretical viewpoint, the first challenge is a liveness requirement, and
the second a safety requirement. The designers will be very glad if we propose
some method for them to check the design problems of this kind, or develop
some methodology to completely avoid these defects.

The WS ChoreographyModel Overview [5] requires that a choreography can be
used to generate individual behavioral interface of peers. The top-down approach
has been proposed and proved effective in some theoretical study [13, 10, 18], in
the sense that the generated individual peers are behaviorally equivalent with the

Correct Channel Passing by Construction 341

Conversation

WS-BPEL

WS-CDL

Instantiate

Collective
Behavior

Projection

channel

 channel Variable

partner link &
endpoint reference

Instantiate

Fig. 2. Conversation

global specification on some conditions. When we think about the dynamic com-
position structures, with the consideration of channel passing, this problem must
also be revisited.

To face these challenges, in this paper, we define a pair of formal languages
with channel passing features for the global and local Web service specifications
respectively. We call them a conversation language and a peer language. Based
on these models, we show how to reason about channel-related problems on both
levels. In addition, we propose a projection from a global specification written in
the conversation language to a set of implementations in the peer language. To
resolve the challenges mentioned above, some conditions for global specifications
are proposed, and we prove that the peers generated from a conversation satis-
fying out conditions can be composed to a system, which will never suffer from
channel-absent and channel-mistake defects. In this study, we take conversation
as a simplified model of choreography. The difference between conversations and
choreographies will also be discussed.

The rest of the paper is organized as follows. A model of conversation is given
in Section 2. Section 3 presents a simple orchestration language with channel
passing, and defines its operational semantics. A projection from conversation
to peers and its correctness is given in Section 4. Section 5 gives a case study to
demonstrate the projection and the correctness constraints. Some related work
and discussion are presented in Section 6. In Section 7, we conclude the work.

2 A Conversation Language

We present a language CONV for global specification in this section. A document
written in CONV is called a conversation.

Conversations specified in CONV are different from choreographies in WS-
CDL in three aspects. Firstly, a conversation specifies a group of peers and their

342 C. Cai et al.

collaborative behavior. In contrast, choreography describes interactions among
a group of roles, while a role is an abstraction of some peers which have similar
behavior and functionality. In other words, a peer can be seen as an instance
of a role, and a conversation is thus an instance of a choreography, as depicted
in Fig. 2. Secondly, it is channel instance through which the peers communicate
with each other in conversation, while channel variables are used in choreography.

The third point is a structural addition, because here we include the descrip-
tion of the initial channel set for each peer, which has no counterpart in WS-CDL.
The initial channel sets are important, and we discussed this problem in another
work [8]. Briefly, without the specification of initial channel sets for the peers, we
can not have automatic method to check the design defects related to channels,
similar to if we did not have type definitions, it would be not possible to have
type-checking.

2.1 Syntax

In a conversation, each peer has an indexed name that ranges over r, r1,...,
rn. Peers communicate with each other through channel instances (or simply,
channels), that range over c, c1, c2, · · · .

A conversation consists of a group of peer declarations, and also an activity
which specifying the collaborative behavior of the peers, with the form:

conv : : = [(PDecl), A]

A peer declaration has the form of:

PDecl : : = r[Ck, Cin]

Here r is the name of the peer. The declaration specifies also an initial channel set
Ck known by the peer before the conversation begins, and a set of channels Cin

that the peer listens on. A peer can only receive messages through the channels
on which it listens.

Each peer involved in collaboration will execute a series of activities. The basic
activities can be divided into two kinds: the local activities which are performed
by a single peer, and the communication activities from one peer to another.
We will use meta-variables ai, ai

1, ... for local activities performed by peer ri. A
communication from ri to rj through channel c1 is represented as c1 : ri c2−→ rj .
Here c2 is the passed channel in the activity which can be used by receiver rj in
the communication afterward. Multiple channels are permitted to be transferred
in one interaction in WS-CDL, which can be simulated by several interactions
in our model, which transfer one channel each time. Since here we care only
about the channel passing, a communication without channel passing will be
represented as c1 :ri−→rj .

The control structures presented in the language are very simple. Sequential
and parallel composition structures are employed here and the behavior of a
conversation is simply an activity A, with the syntax as:

Correct Channel Passing by Construction 343

A : : = c1 :ri c2−→rj (interaction)
| ai (local activity)
| A1;A2 (sequence)
| A1 | A2 (parallel)

2.2 Semantics

In this subsection, we present the operational semantics of the language CONV.
Firstly, we need to introduce some auxiliary notations for the semantic defi-

nitions. The binary predicate K(r, c) means that peer r knows channel c. When
K(r, c) holds, of course, r can use c in the communications. We promote K to the
set of channels. If C = {c1, .., ck} is a set of channels, then K(r, C) =̂K(r, c1) ∧
. . . ∧ K(r, ck). We use pro, possibly with subscription or primes, to denote a
proposition made from K, false and ∧, which is used to represent an initial
channel set of some peers and state in the semantics. It is worth to note that,
the state here includes only information about roles and the channel sets they
know. This reflects our main focus in this work.

We represent the semantics by transition rules between configurations. A con-
figuration is of the form (pro, A), where A is an activity, pro is state. For a con-
versation [(ri[Ci

k, C
i
in]), A], its initial state is pro0 =

∧
i

K(ri, Ci
k), that is, before

the conversation start, each role ri knows its set Ci
k.

A local activity of any peer can always execute. It does not change the state.

(pro, ai) −→ (pro, ε) (Local Activity)

A communication from ri through c1 can happen only if the sender ri knows
the channel c1. Besides, if a channel is passed in the communication, the sender
must know that channel as well. After the interaction, the receiver will know the
passed channel too, and can use it in the communication consequently.

pro) K(ri, {c1, c2})
(pro, c1 :ri c2−→rj) −→ (pro ∧K(rj , c2), ε)

(Communication)

We need another rule for the communication without channel passing. It is al-
most the same as this rule, and is omitted here.

Parallel composition is easily handled here. All parallel branches run indepen-
dently, and then the resulting states are combined.

(pro, A1) −→ (pro1, ε) (pro, A2) −→ (pro2, ε)
(pro, A1 | A2) −→ (pro1 ∧ pro2, ε)

(Parallel)

This rule reflects the most restrictive conditions, under which each branch can
finish its interactions independently and the branches can be executed in any
order.

The transition rule for sequential compositions is regular.

(pro, A1) −→ (pro′, ε) (pro ′, A2) −→ (pro ′′, ε)
(pro, A1; A2) −→ (pro ′′, ε)

(Sequence)

344 C. Cai et al.

Based on the operational semantics, we develop an algorithm to check whether
a conversation lacks of channels which is described by predicate φ. If activity A
gets stuck in state pro because of lack of channel, φ(A, pro) evaluates to false.

φ(ai, pro) = pro

φ(c1 :ri c2−→rj , pro) =
{

false if pro �) K(ri, {c1, c2})
pro ∧ K(rj , c2) else

φ(A1 | A2, pro) = φ(A1, pro) ∧ φ(A2, pro)
φ(A1; A2, pro) = φ(A2, φ(A1, pro))

Theorem 1 (No Stuck). For a conversation with activity A and initial state
pro0, if φ(A, pro0) holds, then the execution of the conversation will not meet a
state where a communication can not carry on because of lacking of channels.

The proof of this theorem is simple and is omitted here.

3 A Peer Language

A conversation describes the interactions among peers from a global viewpoint. It
is intended to be implemented by the coordination of a set of independent peers.
In order to study the relationship between the globally described conversation
and the behavior of the collaborative local activities, we define a language PEER
for specifying the peers, and present its formal semantics.

The language is a simple process language with channel passing features. One
notable point of the language is that we have two distinguishable levels: the
peer (a process) and the system (a combination of several peers). Semantically,
we do not have inter-peer communication and synchronization (i.e., we do not
care about these in the study). The only communications here occur between
different peers, which represent the collaborations between peers.

3.1 Syntax

The syntax of PEER is given below to specify individual services. Here a peer is
an activity A. Peers are similar with activities in CONV, the only difference is
communication activity. Concretely speaking, where the interaction in CONV
is replaced by the sending and the receiving activities, and channels may be
replaced by channel variables.

Here we use c to denote channel, x for channel variables, and h for either a
channel or a channel variable. Variables with the same name have no relation
with each other if they appear in different peers.

A : : = BA (basics)
| A;A (sequence)
| A | A (parallel)

BA : : = skip (silent act.)
| a (local act.)
| h1!h2 (send)
| c?x (receive)

Correct Channel Passing by Construction 345

From the syntax, we know that a sending activity can use either channel vari-
able or channel instance, and send a channel instance or the value of a channel
variable. On the other hand, a receiving activity can only take message from a
channel instance, and record the received channel to a variable. As usually, a
sending activity can succeed only when some other peer is ready to receive it on
the same channel. For our focus on channel passing, we omit messages except
channels. Then the sending and receiving activities are h! and c? respectively, in
the case what passed is not a channel.

Peers collaborate and communicate with each other through network. A sys-
tem composed by a set of peers is defined as “A1 ‖ ... ‖ An”.

3.2 Semantics

We propose the operational semantics of PEER. Firstly we define the configu-
ration of an individual peer, then the configuration of a system which involves
several peers. The semantic rules are transitions between both configurations of
peers and configurations of systems, which are given finally.

A peer is represent as a pair (σ, A) at run-time, where A is an activity to
execute, and σ is a mapping from channel variables to channel instances. Initially,
the configuration for a peer process A is (∅, A) where ∅ represents an empty map.
We use σ(x) = ⊥ to mean that x has not been assigned. For convenience, we
define σ(c) = c for each channel instance c. We use σ[x �→ c] to denote a function
override, which is a map similar to σ except that maps x to c.

A configuration of a system is represented as (σ1, An) ‖ ... ‖ (σn, An), which
will be denoted as Σ, possibly with a subscription. An initial configuration of a
system is composed by the initial configurations of each peer.

In each rule below, α denotes an action, which falls into four categories: local
action a, sending action c!c′, receiving action c?c′ or silent action τ . We use bn(α)
to denote the bounded channel of α defined as

bn(a) = ∅
bn(c!c′) = {c}
bn(c?c′) = {c}
bn(τ) = ∅

Now, we give the transition rules. Firstly, a local activity or a silent activity of
any peer can always happen without any influence of the state.

(σ, a) a−→ (σ, ε) (Local)

(σ, skip) τ−→ (σ, ε) (Silent)

The rules for sequential and parallel composition are regular.

(σ, A1)
α−→ (σ′, A′

1)

(σ, A1; A2)
α−→ (σ′, A′

1; A2)
(Sequence)

(σ, A1)
α−→ (σ′, A′

1)

(σ, A1 | A2)
α−→ (σ′, A′

1 | A2)
(Parallel)

346 C. Cai et al.

A sending activity through channel variable x1 can occur only if the sender
knows the corresponding channel instance of x1, and that of the passed channel
if there is channel passing.

σ(x1) = c1 �= ⊥, σ(x2) = c2 �= ⊥
(σ, x1!x2)

c1!c2−→ (σ, ε)
(Send)

If a peer listens on channel c1, it may proceed one step, and the environment is
updated by the receiving action.

(σ, c1?x2)
c1?c2−→ (σ[x2 �→ c2], ε) (Receive)

Communication happens if a sending activity and a receiving one match.

(σ1, A1)
c1!c2−→ (σ′

1, A
′
1), (σ2, A2)

c1?c2−→ (σ′
2, A

′
2)

(σ1, A1) ‖ (σ2, A2)
τ−→ (σ′

1, A
′
1) ‖ (σ′

2, A
′
2)

(Communication)

From the rules defined, we see that the communication can happen only between
different peers in a system, when one of them sends and another receives.

If a system (composed of some peers) can complete an action, then a bigger
system (composed with some more peers) can also do this action.

Σ1
α−→ Σ2

Σ1 ‖ Σ
α−→ Σ2 ‖ Σ

(Promotion)

An equivalent rule and some congruence rules are given to reduce the number
of transition rules.

Σ0 ≡ Σ1, Σ1
α−→ Σ2, Σ2 ≡ Σ3

Σ0
α−→ Σ3

(Equivalence)

Here are the congruence rules :

A1 | A2 ≡ A2 | A1

ε; A ≡ A
ε | A ≡ A

(σ1, A1) ‖ (σ2, A2) ≡ (σ2, A2) ‖ (σ1, A1)

The restriction rule prohibits peer from communication with those outside the
system through the channels listed in L.

Σ
α−→ Σ′

Σ \ L
α−→ Σ′ \ L

if bn(α) ∩ L = ∅ (Restriction)

Although Internet is very big and deep, a peer uses only a part of it to com-
municate with its partners, and the rest of the network can be excluded. The
restriction rule reflects the fact. By this rule, we can restrict some communication
in the boundary of a system.

Correct Channel Passing by Construction 347

Definition 1. A system, in which each peer has finished their task, formally
(σ1, ε) ‖ ... ‖ (σn, ε), is denoted as 0.

Definition 2. Given a system A1 ‖ · · · ‖ An, where its initial configuration is
Σ, and L is the set of all channel instance involved, we say the system is deadlock
free, if Σ \L never deadlocks. i.e., for any configuration Σ′, if Σ \L −→∗ Σ′ \L,
there is a reduction Σ′ \L −→∗ 0\L. Here −→∗ is the transitive relation of −→.

We will propose a way to help designers getting deadlock free systems in the
next section.

4 A Top-Down Design Approach

Conversations can be used to support the development of individual peers. Here
we propose an algorithm to generate the implementations of the peers from a
conversation. Then, we will prove that the generated systems can be guaranteed
correctness if the original conversations satisfy a set of conditions.

4.1 Projection

To generate implementations, we need some auxiliary tools.
Firstly, for a given conversation, we take an arbitrary mapping θ0, which

maps channel instances appeared in the conversation to channel variables. e.g.,
θ0(c) = x, for each c in the conversation and some x. The only requirement
for θ0 is that it should be injective, that is, it gives different variable names for
different channel instances.

With mapping θ0 at hand, we define a function θ, which takes as input a
channel instance and a peer’s index, return either a channel instance or a channel
variable. Its definition is as follows:

θ(c, i) =
{

c if c ∈ Ci
k ∪ Ci

in

θ0(c) otherwise

Intuitively, if θ(c, i) returns some variable x, we plan to use x as the variable
to record channel c in role ri when c is passed to this role. Clearly, if we use θ
for different roles with the same channel, the returned names will be the same.
However, it does not makes any conflicts, because variables reside on different
roles, even with the same name, have nothing to do with each other.

The project algorithm π is given below. For a conversation written in CONV
with behavior A, and the destination peer is rk, π(A, k) generates the imple-
mentation of rk in PEER.

π(ai, k) =̂
{

ai if k = i
skip if k �= i

π(c1 : i c2−→j, k) =̂

⎧⎨⎩
θ(c1, k)!θ(c2, k) if k = i
θ(c1, k)?θ(c2, k) if k = j
skip otherwise

π(A1;A2, k) =̂ π(A1, k);π(A2, k)
π(A1 | A2, k) =̂ π(A1, k) | π(A2, k)

348 C. Cai et al.

It is not hard to see that the function θ defined before helps to keep the consistent
using of each channel for generating a reasonable implementation.

If a conversation has n roles, we will get n peers by using this projection π.
The combination of these peers forms a system. The relationship between the
conversation and this system will be discussed in next subsection.

4.2 Relation between Conversation and Generated Peers

For a conversation which describes the correlative behavior of n peers, the pro-
jection π defined above will generate n individual peers (processes). We hope
that the generated peers, when combined together to form a system, will be
semantically equivalent to the conversation. Previous results show that such
equivalence can only hold under some conditions on the global-viewed specifica-
tions [18, 13, 10]. We need some additional conditions for the situation here, as
we have taken the channel passing into our consideration.

Now we propose a group of conditions for conversations that ensure correct
channels and channel passing for the peers generated from it. These new condi-
tions are orthogonal to the other conditions, so we do not repeat conditions and
properties presented in previous works.

Theorem 2. For a conversation [(ri[Ci
k, C

i
in]), A], if:

1. For any two peers ri and rj , Ci
in ∩ Cj

in = ∅, if i �= j.
2. For each peer rj and interaction c1 :ri c2−→rj , we must have c1 ∈ Cj

in.
3. φ(A,

∧
K(ri, Ci

k)) does not evaluate to false.

Then, the peers generated by π combined together, will never suffer “Channel-
Absent” or “ Channel-Mistake”.

In the theorem, the first condition requires different peers to listen on different
channels, thus ensures deterministic information flow. The second condition says
that the receiver should declare all the channels it listens on. The third condition
rules out these conversations which are lack of channels.

Theorem 2 can be divided into the following two sub-theorems:

Theorem 3 (Correct Channels). If a conversation satisfies all the three con-
ditions given in Theorem 2, then each peer generated from it by projection π
will get the desired channels. That is, for any interaction c1 : ri c2−→ rj in the
conversation, in the system composed by the generated peers, peer rj will receive
c2 in the corresponding interaction.

Theorem 4 (Sufficient Channels). Suppose Conv is a conversation satisfies
all the three conditions given in Theorem 2, then the system composed of these
generated peers is deadlock-free.

These theorems solve the challenges of “Channel-Absent” and“Channel-Mistake”.
The proof for the theorems is given in Appendix A.

We must point out that only these three conditions can not ensure the behav-
ioral equivalence between a conversation and the system formed by its generated

Correct Channel Passing by Construction 349

peers. An example is a conversation with activity c1 : r1 −→ r2; c2 : r3 −→ r4,
where two interactions may be executed in any order in the generated system.
The problem like this is a general control flow problem, but not specially related
to channel passing, thus is out of range of this paper. Interested readers can refer
our previous work [18], where we have a detailed study on this.

5 Case Study

Now we reconsider the example depicted in Figure 1, and write down that sce-
nario formally in our language CONV. There are three peers in the conversation:
a buyer “b”, a seller “s”, and a shipper “d” which takes charge of the goods deliv-
ery. These peers communicate through several channels. The buyer listens on cb

to receive messages, while cs is the channel for the seller and cd for the shipper.
Firstly, we give a defective conversation Conv1 to see what will happen. For

easy the discussion, we add a label for each interaction.

Conv1 = [(b[{cs, cb}, {cb}],
s[{cs, cd}, {cs}],
d[{cd}, {cd}]),
I1 : cs :b−→s;
I2 : cd :s−→d;
I3 : cb :d−→b

]

Using the projection π defined in Section 4, we will get the following three peer
implementations b1, s1 and d1:

b1 = cs!; cb?
s1 = cs?; cd!
d1 = cd?; x!

By the checking algorithm φ given in Section 2, we know that the conversation
lacks of channel. Interaction I3 can not be carried out because the shipper does
not know the channel of the buyer. Also, by the reduction rules in Section 3, the
system composed of b1, s1 and d1 will eventually deadlock, because the shipper
can not evaluate x to a channel instance.

Many methods can be applied to remedy this defect. A simple one is to let
the shipper know cb initially, as in the Conv2 given here:

Conv2 = [(b[{cs, cb}, {cb}],
s[{cs, cd}, {cs}],
d[{cb, cd}, {cd}]),
I1 : cs :b−→s;
I2 : cd :s−→d;
I3 : cb :d−→b

]

350 C. Cai et al.

The peers generated from Conv2 are as follows:

b2 = cs!; cb?
s2 = cs?; cd!
d2 = cd?; cb!

Now, we can verify that both Conv2 and “(b2 ‖ s2 ‖ ds) \ L” are deadlock-free,
where (L = {cs, cb, cd}).

However, conversation Conv2 is practically useful only if a static commu-
nication structure and the relationship between the three peers is predefined.
Generally, as discussed in the Introduction, it is more reasonable that the seller
selects shipper and tells it the channel of the buyer. For model this process, we
can add channel passing from the buyer to the seller and then from the seller to
the shipper, and finally have a conversation below:

Conv3 = [(b[{cs, cb}, {cb}],
s[{cs, cd}, {cs}],
d[{cd}, {cd}]),
I1 : cs :b cb−→s;
I2 : cd :s cb−→d;
I3 : cb :d−→b

]

The peers generated from Conv3 are as follows:

b3 = cs!cb; cb?
s3 = cs?x; cd!x
d3 = cd?x; x!

We can easily check that φ holds for the conversation, and the generated system
behaves as desired.

Both revised versions work in the sense that channels are sufficient for all
peers to complete their processes, and each group of peers generated from them
are deadlock-free. But considering the actual business practice, it is not realistic
that a shipper knows the customer’s contact information before a deal begins.

The example gives us a hint that whether a peer can know/should know a
partner’s channel is application-dependent, and should be decided by the system
designer. If a conversation is channel-defective, there are, in general, always more
than one way to repair the defect. It is crucial in the practice to choose a right
repairing method.

6 Related Work

Due to the growing interesting on Web services, some formal models on both
service choreography and orchestration have been proposed, and realization and
conformance problems are discussed based on the models.

Correct Channel Passing by Construction 351

In [6], Busi et al. formalized conformance with a bisimulation-like relation.
In their another paper [7], the notion of state variables in the semantics of
the orchestration model is used to build a relation between choreography to
orchestration operationally. By means of automata, Schifanella et al. [3] de-
fined a conformance notion that tests whether interoperability is guaranteed. Fu
et al. [14] specified a conversation protocol by a realizable Büchi automaton,
and the peer implementations are synthesized from the protocol via projection.
Bravetti and Zavattaro [4] proposed a theory of contracts for conformance check-
ing. They defined an effective procedure that can be used to verify whether a
service with a given contract can correctly play a specific role within a choreog-
raphy. Moreover, Decker et al. discussed the issue of local enforceability of Let’s
Dance choreographies in [12]. Aalst [19] focuses on conformance by comparing
the observed behavior recorded in logs with some predefined model. In a previ-
ous work [18], we defined the concept of restricted natural choreography that is
easily implementable, and proposed two structural conditions as a criterion to
distinguish the restricted natural choreography. However, these literatures did
not take channel passing and dynamic communication structures into to their
model.

Carbone et al. [9] studied the description of communication behaviors from
both global message flows and end-point behavior levels respectively. They in-
troduced the concept of service channel and session channel. More recently,
Lucchi [17] adopted π-calculus to represent the semantics of WS-BPEL, and
formalized channel passing as location mobility in paper [15]. To model Web
services, Laneve and Zavattaro extended π-calculus to Webπ [16], which can de-
scribe both a single service (machine) and services compositions. These works
put channel passing (or name passing) into models but did not consider the
reasoning about channels, nor verification of channel sufficiency and correctness.

In [20], we proposed a small language for modeling the channel passing aspect
of choreography. Based on the formal semantics of the language, some algorithms
for static checking choreography and generating necessary channel passing are
studied. We also show how to use this model to check design defects in WS-CDL
where no initial channel sets for each participants are given in [8]. However, in
these work, we have not considered the implementation problem of choreography.

7 Conclusion and Future Work

A channel contains information on where and how to send messages to a specific
peer, which arises in diverse forms in practice, such as sockets, remote object IDs,
and URLs [10]. Channels can be passed within message content for the receiver to
use in the consequent communications. The so-called channel passing allows the
destination for messages to be determined dynamically. Both WS-BPEL and
WS-CDL adopt some mechanisms to support channel passing. When channel
passing is involved, designers must ensure that each service can get enough and
correct channels, i.e., getting rid of “Channel-Absent” and “Channel-Mistake”
problems present in their system.

352 C. Cai et al.

To solve these challenges, we propose a formal language CONV for the spec-
ify conversation and a top-down approach to generate individual peers from a
conversation. Also, we define a formal model for peers to reason about channels.
Based on these formalization, we propose three conditions for conversations,
and prove that these condition are sufficient to restrict conversations so that
generated peers are immune to the these problems.

To design a conversation, all related channels should be determined. But some-
times in practice, channels are generated at run-time to include correlation infor-
mation. In this case, channel variables are used in global description. Then, the
peers take charge of instantiation of some channels and different peers may give
contradict values for a same channel variables. In future work, we will explore
such global description, and study its realizability problem.

References

1. Web Services Choreography Description Language (WS-CDL), version 1.0 (2005),
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

2. Business Process Execution Language for Web Services (WS-BPEL), version 2.0
(April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verifying the con-
formance of web services to global interaction protocols: A first step. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp.
257–271. Springer, Heidelberg (2005)

4. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Proc. of Software Composition 2007. Springer,
Heidelberg (2007)

5. Burdett, D., Kavantzas, N.: WS Choreography Model Overview,
http://www.w3.org/TR/ws-chor-model/

6. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg
(2005)

7. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

8. Cai, C., Qiu, Z.: An approach to check choreography with channel passing in WS-
CDL. In: The Proceeding of International Conference on Web Service (ICWS) (to
appear, 2008)

9. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

10. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A theoretical basis of communication-centred concurrent programming. Technical
report, W3C (2006),
http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service Defini-
tion Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-chor-model/
http://www.w3.org/2002/ws/chor/edcopies/theory/note.pdf
http://www.w3.org/TR/wsdl

Correct Channel Passing by Construction 353

12. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

13. Fu, X., Bultan, T., Su, J.: A top-down approach to modeling global behaviors of
web services. In: REOS 2003 (2003)

14. Fu, X., Bultan, T., Su, J.: Conversation protocols: A formalism for specification
and verification of reactive electronic services. Theoretical Computer Science 328
(2004)

15. Guidi, C., Lucchi, R.: Mobility mechanisms in service oriented computing. In:
Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 233–250.
Springer, Heidelberg (2006)

16. Laneve, Zavattaro: Foundations of web transactions. In: Myaeng, S.-H., Zhou, M.,
Wong, K.-F., Zhang, H.-J. (eds.) AIRS 2004. LNCS, vol. 3411. Springer, Heidelberg
(2005)

17. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

18. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: Proc. of WWW 2007, Banff, Canada. ACM Press, New York (2007)

19. van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.: Choreography
conformance checking: An approach based on BPEL and Petri Nets (extended
version). Technical report, BPM Center Report BPM-05-25, BPMcenter.org (2005)

20. Yang, H., Cai, C., Peng, L., Zhao, X., Qiu, Z.: Reasoning about channel passing
in choreography. In: TASE 2008. 2nd IFIP/IEEE International Symposium on
Theoretical Aspects of Software Engineering, pp. 135–142. IEEE Computer Society
Press, Los Alamitos (2008)

Appendix: Proofs of Some Theorems

Consider conversations without “|” and local activities, thus a conversation is
a sequence of interactions connected by “;”. For the ease of discussion, we add
incremental identifiers I1, ..., Im for interactions in a conversation from beginning
to end. The identifiers are also projected into peers’ process.

Lemma 1. For a conversation satisfies Condition 3 we proposed in Subsec-
tion 4.2, for any interaction Ih where peer ri will use c (either transfer c or
transfer through c), then c ∈ Ci

k, or there is a sequence of interactions Ih1 , ..., Ihs ,
where h1 < ... < hs < h, c is known by the sender of Ih1 initially, Ihj (1 ≤ j <
s − 1,)transfers c to the sender of Ihj+1 , and the receiver of Ihs is ri.

Proof: It is directly implied by the function φ proposed in Section 2.

Proof for Theorem 3: Apply induction on h, the subscript of interaction. Sup-
pose interaction Ih is c1 : ri c2−→ rj , and θ0(c1) = y, θ0(c2) = x where θ0 is
the injective mapping used in projection. If h = 1 then the behavior of the
conversation must be I1; A, c1 ∈ Ci

k. Thus peer ri = I1 : c1!c2; π(A, i). peer
rj = I1 : c1?x; π(A, j). Obviously, rj will receive c2 in I1 and I1 will terminate.

Suppose Ih, h < k has terminated correctly, to prove Ik will terminate cor-
rectly. Suppose the conversation is A; Ik; A′ The configuration of the sender ri

354 C. Cai et al.

is (σi, Ik : y!x; π(A′, i)). By Lemma 1, both c1 and c2 are known by ri initially,
or a sequence of finished interactions transfer them to ri. We have σi(y) = c1

and σi(x) = c2.
At that time, the configurationof the receiver rj must be (σj , Ik : c1!x; π(A′, j)).

By the transition rule proposed in Section 3, Ik happens and rj assigns channel
variable x with c2.

Proof for Theorem4: Because “|” and local activities would never affect the path
for channel passing, Theorem 3 can be extended in the case that parallel and local
activities are included. If all interactions will be carried out, then the system never
deadlocks. Theorem 4 is proved.

A Process Semantics for BPMN

Peter Y.H. Wong and Jeremy Gibbons

Computing Laboratory, University of Oxford, United Kingdom
{peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

Abstract. Business Process Modelling Notation (BPMN), developed by
the Business Process Management Initiative (BPMI), intends to bridge the
gap between business process design and implementation. However, the
specification of the notation does not include a formal semantics. This pa-
per shows how a subset of the BPMN can be given a process semantics in
Communicating Sequential Processes. Such a semantics allows developers
to formally analyse and compare BPMN diagrams. A simple example of a
business process is included to demonstrate the application of the seman-
tics; some theoretical results about the semantics are briefly discussed.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) [13] allows devel-
opers to take a process-oriented approach to modelling of systems. There are
currently around forty implementations of the notation, but the notation spec-
ification developed by BPMI and adopted by OMG does not have a formal
behavioural semantics, which we believe is crucial in behavioural specification
and verification activities.

BPMN has been specified to map directly to the BPML standard, which has
subsequently been superceded by WS-BPEL [2]. To the best of our knowledge
the only previous attempt at defining a formal semantics for a subset of BPMN
did so using Petri nets [4,5]. However, their semantics does not properly model
multiple instances and does not allow comparisons of diagrams via refinements.
A significant amount of work has been done towards the mapping between a
particular class of BPMN diagrams and WS-BPEL [14,15], and the formal se-
mantics of WS-BPEL [8,10,11,12]. However, as the use of graphical notations to
assist the development process of complex software systems has become increas-
ingly important, it is necessary to define a formal semantics for BPMN to ensure
precise specification and to assist developers in moving towards correct imple-
mentation of business processes. A formal semantics also encourages automated
tool support for the notation.

The main contribution of our work is to provide a formal process semantics
for a subset of BPMN, in terms of the process algebra CSP [16]. By using the
language and the behavioural semantics of CSP as the denotational model, we
show how the existing refinement orderings defined upon CSP processes can be
applied to the refinement of business process diagrams, and hence demonstrate

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 355–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 P.Y.H. Wong and J. Gibbons

how to specify behavourial properties using BPMN. Moreover, our processes
may be readily analysed using a model checker such as FDR [7]. Our semantic
construction starts from syntax expressed in Z [19], following Bolton and Davies’s
work on UML activity graphs [1].

This paper begins with an introduction to BPMN and the mathematical nota-
tions, Z [19] and CSP [16], that are used throughout the paper. Our contribution
starts in Section 3, with a Z model of BPMN syntax, and continues in Section 4
with a behavioural semantics in CSP. In Section 5 we give a simple example to
show how our semantics allows consistency between different levels of abstrac-
tion to be verified, and discuss briefly some theoretical results. We conclude this
paper with a summary.

2 Notation

2.1 BPMN

States in our subset of BPMN [13] can either be pools, tasks, subprocesses,
multiple instances or control gateways; they are linked by sequence, exception
or message flows; sequence flows can be either incoming to or outgoing from a
state and have associated guards; an exception flow from a state represents an
occurrence of error within the state. Message flows represent directional commu-
nication between states. A sequence of sequence flows hence represents a specific
control flow instance of the business process.

A table showing each type of state is presented in Figure 1. In the figure,
a start state models the start of the business process in the current scope by
initiating its outgoing transition. It has no incoming transition and only one
outgoing transition. There are two types of end states end and abort. An end

Fig. 1. States of BPMN diagram

A Process Semantics for BPMN 357

state models the successful termination of an instance of the business process
in the current scope by initialisation of its incoming transition. It has only one
incoming transition with no outgoing transition. The abort state is a variant end
state and models an unsuccessful termination, usually an error of an instance of
the business process in the current scope.

Also in the figure, each of the xgate, agate and ogate state types has one or
more incoming sequence flows and one or more outgoing sequence flows. An xgate
state is an exclusive gateway, accepting one of its incoming flows and taking one
of its outgoing flows; the semantics of this gateway type can be described as an
exclusive choice and a simple merge. An agate state is a parallel gateway, which
waits for all of its incoming flows before initialising all of its outgoing flows. An
ogate state is an inclusive gateway, accepting one or more incoming sequence
flows depending on their associated guards and initialising one or more of its
outgoing flows also depending on their associated guards.

A task state describes an atomic activity and has exactly one incoming and one
outgoing transition. A bpmn state describes a subprocess state; it is a business
process by itself and so it models a flow of BPMN states. Figure 1 depicts a
collapsed subprocess state where all internal details are hidden; this state has
exactly one incoming and one outgoing transition. Also in Figure 1 there are
graphical notations labelled task* and bpmn*, which depict a task state and a
subprocess state with an exception flow. Each task and subprocess can also be
defined as multiple instances. There are two types of multiple instances in BPMN:
The miseq state type represents serial multiple instances, where the specified task
is repeated in sequence; in the mipar state type the specified task is repeated in
parallel. The types miseqs and mipars are their subprocess counterparts.

The graphical notation pool in Figure 1 depicts a participant within a business
collaboration involving multiple business processes. Each pool forms a container
for some business processes; only one process instance is allowed at any one
time. While sequence flows are restricted to an individual pool, message flows
represent communications between pools. For reasons of space we have omitted
the syntactic and semantic definitions of message flows, details of which are in
an extended version of this paper [18].

2.2 Z

The Z notation [19] has been widely used for state-based specification. It is
based on typed set theory coupled with a structuring mechanism: the schema.
A schema is essentially a pattern of declaration and constraint. Schemas may be
named using the following syntax:

Name

declaration

constraint

358 P.Y.H. Wong and J. Gibbons

or equivalently

Name =̂ [declaration | constraint]

If S is a schema then θS denotes the characteristic binding of S in which each
component is associated with its current value. Schemas can be used as decla-
rations. For example, the lambda expression λS • t denotes a function from the
schema type underlying S , a set of bindings, to the type of term expression t.

The mathematical language within Z provides a syntax for set expressions,
predicates and definitions. Types can either be basic types, maximal sets within
the specification, each defined by simply declaring its name, or be free types,
introduced by identifying each of the distinct members, introducing each element
by name. An alternative way to define an object within an specification is by
abbreviation, exhibiting an existing object and stating that the two are the same.

Type ::= element1 | ... | elementn [Type] symbol == term

By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying predicate p.

x : S

p

2.3 CSP

In CSP [16], a process is a pattern of behaviour; a behaviour consists of events,
which are atomic and synchronous between the environment and the process.
The environment in this case can be another process. Events can be compound,
constructed using the dot operator ‘.’; often these compound events behave as
channels communicating data objects synchronously between the process and
the environment. Below is the syntax of the language of CSP.

P ,Q ::= P ||| Q | P |[A]|Q | P |[A | B]| Q | P \ A | P � Q |
P � Q | P ! Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P and
Q . Process P |[A]|Q denotes the partial interleaving of processes P and Q sharing
events in set A. Process P |[A | B]| Q denotes parallel composition, in which P

and Q can evolve independently but must synchronise on every event in the set
A∩B ; the set A is the alphabet of P and the set B is the alphabet of Q , and no
event in A and B can occur without the cooperation of P and Q respectively.
We write ||| i : I • P(i), ‖[A] i : I • P(i) and ‖ i : I • A(i) ◦ P(i) to denote an
indexed interleaving, partial interleaving and parallel combination of processes
P(i) for i ranging over I .

Process P \ A is obtained by hiding all occurrences of events in set A from
the environment of P . Process P � Q denotes a process initially behaving as P ,

A Process Semantics for BPMN 359

but which may be interrupted by Q . Process P � Q denotes the external choice
between processes P and Q ; the process is ready to behave as either P or Q . An
external choice over a set of indexed processes is written � i : I • P(i). Process
P ! Q denotes the internal choice between processes P or Q , ready to behave
as at least one of P and Q but not necessarily offer either of them. Similarly an
internal choice over a set of indexed processes is written � i : I • P(i).

Process P o
9 Q denotes a process ready to behave as P ; after P has successfully

terminated, the process is ready to behave as Q . Process e → P denotes a
process capable of performing event e, after which it will behave like process P .
The process Stop is a deadlocked process and the process Skip is a successful
termination.

CSP has three denotational semantics: traces (T), stable failures (F) and
failures-divergences (N) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable
failures model. The traces model is insufficient for our purposes, because it does
not record the availability of events and hence only models what a process can
do and not what it must do [16]. For example, the processes a → Skip and
(a → Skip) ! Stop have the same traces (the traces model is prefix-closed), even
though the latter one is allowed to do nothing at all no matter what we offer it.
In order to distinguish these processes, it is necessary to record not only what a
process can do, but also what it can refuse to do. This information is preserved
in refusal sets, sets of events from which a process in a stable state can refuse to
communicate no matter how long it is offered. The set refusals(P) is P ’s initial
refusals. A failure therefore is a pair (s, X) where s ∈ traces(P) is a trace of P

leading to a stable state and X ∈ refusals(P/s) where P/s represents process P

after the trace s. We write traces(P) and failures(P) as the set of all P ’s traces
and failures respectively.

We write Σ to denote the set of all event names, and CSP to denote the
syntactic domain of process terms. We define the semantic function F to return
the set of all traces and the set of all failures of a given process, whereas the
semantic function T returns solely the set of traces of the given process.

F : CSP → (P seq Σ × P(seqΣ × P Σ))

T : CSP → P seq Σ

These models admit refinement orderings based upon reverse containment; for
example, for the stable failures model we have

#F : CSP ↔ CSP

∀P ,Q : CSP •
P #F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

While traces only carry information about safety conditions, refinement under
the stable failures model allows one to make assertions about a system’s safety
and availability properties. These assertions can be automatically proved us-
ing a model checker such as FDR [7], exhaustively exploring the state space of

360 P.Y.H. Wong and J. Gibbons

a system, either returning one or more counterexamples to a stated property,
guaranteeing that no counterexample exists, or until running out of resources.

3 Syntactic Description of BPMN

In this section we describe the abstract syntax of BPMN using Z schemas and
set theory, and use an example in Section 3.2 to show how the syntax can be
applied on a given BPMN diagram. For reasons of space, we have omitted certain
schema and function definitions and have only concentrated on the definition of
a smaller subset of the BPMN states than shown in Section 2; readers may refer
to our longer paper [18] for their full definitions.

3.1 Abstract Syntax

We first introduce some maximal sets of values to represent constructs such as
lines, task and subprocess name, defined as Z’s basic types:

[CName,PName,Task , Line,Guard]

We then derive subtypes BName and PLName axiomatically:

BName,PLName : P PName

〈BName,PLName〉 partition PName

The sequence of sets 〈S1 . . Sn 〉 partitions some set T iff⋃
S1 . . Sn = T ∧ (∀ i , j : 1 . . n • Si ∩ Sj = ∅)

Each type of state shown in Figure 1 is defined using the free type Type where
each of its constructors describes a particular type of states. For example, the
type of an atomic task state is defined by task t where t is a unique name that
identifies that task state. Below is the partial definition.

Type ::= start | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
xgate | bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉

According to the specification [13], each BPMN state type has other associated
attributes describing its properties; our syntactic definition has included only
some of these attributes. For example, the number of loops of a sequence multiple
instance state type is recorded by the natural number in the constructor function
miseq. We define some abbreviations as follows to assist our specification.

Tasks == ran task ∪ ran miseq ∪ ran mipar

Subs == ran bpmn ∪ ran mipars ∪ ran miseqs

In this paper we call both sequence flows and exception flows ‘transitions’; states
are linked by transition lines representing flows of control, which may have as-
sociated guards. We give the type of a sequence flow or an exception flow by the
following schema definition.

Trans =̂ [guard : Guard ; line : Line]

A Process Semantics for BPMN 361

Here we show a partial definition of the schema State for each BPMN state,
omitting the inclusion of schema components for message flows.

State =̂ [type : Type; in, out , error : P Trans; exit : P(N × Trans); loop : N]

Each state records the type of its content, the sets of incoming, outgoing and
error transitions, and in the case of a subprocess state, a set of number-transition
pairs to align the outgoing transitions of the subprocess within the outgoing
transitions within the subprocess. Each state incorporates the variable loop to
limit the number of state instances the process instance can invoke. The state
also records different types of message flows, but we have omitted their definition
in this paper.

We denote a subset of well-formed states in BPMN by the schema type WFS ,
and we define the type WCF : P(P State) to be the set of well-configured sets
of well-formed states WCF . Well-formedness is defined to conform to the con-
straints within the official documentation [13]; for example, a start state must
have no incoming transition and only one outgoing transition. A definition of
this subset may be found in the extended version of this paper [18].

Each BPMN diagram, encapsulated by a pool representing an individual par-
ticipant in a collaboration, is built up from a well-configured finite set of well-
formed states. We do not allow local states to have type pool , since this represents
a boundary of a business domain. The function type Local represents the envi-
ronment of the local specification and each function of its type maps each name
of a BPMN diagram to its associated diagram. Consequently a collaboration is
built up from a finite set of names, and each of the names is associated with a
BPMN diagram. For reasons of space both the syntactic and semantic defini-
tion of collaboration have been omitted, again, see the extended version of this
paper [18].

BPD ::= states〈〈WCF 〉〉
Local == PName �→ BPD

3.2 An Example

We present an example of a business process of an airline reservation system
shown in Figure 2; this example has been taken from the WSCI specification [17].
It could be assumed to have been constructed during the development of the
reservation system. We have abstracted message flows, as there is only one busi-
ness participant in the example. We use this example to illustrate how a BPMN
diagram can be translated into a well-configured set of states describing the
diagram’s syntax.

We observe that the airline reservation business process is initiated by verify-
ing seat availability, after which seats may be reserved. If the reservation period
elapses, the business process will cancel the reservation automatically and notify
the user. The user might decide to cancel her reservation, or proceed with the
booking. Upon a successful booking, tickets will be issued.

362 P.Y.H. Wong and J. Gibbons

Fig. 2. A BPMN diagram describing the workflow of an airline reservation application

Given the business process name airline, the following shows a set of well-
formed states translated from the diagram describing the reservation part of busi-
ness process. We have omitted details of the bindings of Trans and Messageflow .
We write a1 . . an � ∅ inside some schema binding s to specify the components
s.a1 . . s.an to be empty. The syntactic details of the subprocesses Reserve and
Booking are also omitted.

airline : PName; book , reserve : BName; verify , timeout , notify : Task

∃ local : Local ; t1, t2, t3, t4, t5, t6, t7, t8 : Trans; i , j , k , l ,m,n : N •
states∼(local airline) =

{ 〈|type � start , out � { t1 }, in, error , exit � ∅|〉,
〈|type � mipar verify n, in � { t1 }, out � { t2 }, error , exit � ∅|〉,
〈|type � bpmn reserve, in � { t2 }, out � { t3 }, error � ∅, exit � { (m, t3) }|〉,
〈|type � bpmn book , in � { t3 }, out � { t4, t5 }, error � { t6 },

exit � { (k , t4), (l , t5) }|〉,
〈|type � task timeout , in � { t6 }, out � { t7 }, error , exit � ∅|〉,
〈|type � task notify , in � { t5, t7 }, out � { t8 }, error , exit � ∅|〉,
〈|type � end i , in � { t4 }, out , error , exit � ∅|〉,
〈|type � abort j , in � { t8 }, out , error , exit � ∅|〉 }

4 Behavioural Semantics of BPMN

In Section 3 we gave an overview of the abstracted syntax for BPMN in Z. In
this section, we define a semantic function which takes the syntactic description
of a BPMN diagram and returns the CSP process that models the behaviour
of that diagram. That is, the function returns the parallel composition of pro-
cesses corresponding to the states of the diagram, each synchronising on its own
alphabet, which represents its transition events, to ensure the correct order of
control flow. For reasons of space, we only consider the semantics of a BPMN

A Process Semantics for BPMN 363

diagram with a single participant (i.e. one pool), and each function associated to
the semantics will be defined over a smaller subset of the BPMN states, namely
the states of type start, end , task , miseq, miseqs (subprocess), bpmn (subprocess),
agate, xgate and ogate, which have been described in Section 2; the semantics of
other states in the figure may be defined similarly. The complete semantic defi-
nition of business collaboration and of other states may be found in our longer
paper [18]. The rest of the section is structured as follows: in Section 4.1 we
define functions to associate each transition, state and diagram with their set
of events; Section 4.2 presents the overall semantic functions for mapping each
BPMN diagram to its process describing its behaviour; in Section 4.3 we present
the CSP processes corresponding to the behaviour of each gateway; and in Sec-
tion 4.4 we define processes corresponding to the behaviour of each state type
and transition, and the general functions for mapping each BPMN state to the
CSP process describing its behaviour.

4.1 Alphabets

First we define the basic types Process and Event which correspond to CSP
processes and events.

[Process, Event]

We define the partial injective function εtrans which maps each transition to a
pair of a CSP event and a guard. We insist that each transition maps to a unique
CSP event. The functions εtask and εpname map each task and process name to
a unique event respectively.

εline : Line �� Event

εtask : Task �� Event

εpname : PName �� Event

εtrans : Trans �� (Event × Guard)

εtrans = λ Trans • (εline line, guard)

In order to define the alphabet for each state, corresponding to the events on
which each state must synchronise, we must consider the events associated with
each transition, type and messageflow. We define the function αtrans which maps
each set of transitions to the set of associated events. (Given a tuple of n elements
t, we use the projection notation t .m to the denote the mth element of the tuple.)

αtrans : PTrans � P Event

αtrans = λ ts : Trans • { t : εtrans(| ts |) • t .1 }

The alphabet of a given state is the set of events associated with a state with
which it must synchronise. A state’s alphabet is the union of the events mapped
from all its incoming and outgoing transitions, type and exception flows. We
define αstate to be a function mapping each state into its alphabet.

364 P.Y.H. Wong and J. Gibbons

αstate : Local �→ State �→ PEvent

αstate = (λ l : Local • (λState •
if (type /∈ (Tasks ∪ Subs)) then αtrans (out ∪ in)

else (if (type ∈ ran miseq) then αtrans (µ t : miseqt s • { t .1, t .2 }) else ∅))
∪ (if (type ∈ Subs) then

⋃
((αstate l) (| states∼(l(bpmn∼type)))

else (if (type /∈ Tasks) then ∅ else { εtask (task∼type) }))
∪ αtrans(out ∪ in ∪ error))))

The function miseqt maps each state of type miseq to a transition pair used to
connect the state’s task or subprocess state.

miseqt : State �� (Trans × Trans)

miseqt = (λState • (µ(s, t) : (Trans × Trans) | s �= t))

We also define the function αprocess to map each diagram to the set of all pos-
sible events performed by the process describing an individual local diagram’s
behaviour.

αprocess : PName �→ Local �→ P Event

∀ p : PName; local : Local •
αprocess =

⋃
{ s : states∼(local p) • αstate s local }

4.2 Processes Corresponding to Diagrams

Our semantics abstracts the internal flow of individual task states and only
models the sequence of task initialisations and terminations within a business
process. Our semantic function bsem takes a syntactic description of a BPMN
diagram encapsulated by a state of type pool or a BPMN subprocess and returns
a parallel composition of processes, each corresponding to one of the diagram’s
or process’s states. The parallel composition, defined by the function bsm, is
conjoined via partial interleaving with process X to ensure that the business
process either terminates successfully or deadlocks because of an exception flow.
We define compound events fin.i and abt .i where i ranges over N to denote the
successful completion and the abortion of a business process.

bsem : PName �→ Local �→ Process

hide : PName �→ Local �→ P Event

∀ p : PName; l : Local •
bsem p l =

let A = {a : εabort p l ; e : εend p l • fin.e, abt .a } ∪ αproc p l

X = � i : αproc p l • i → X � (� e : εabort p l • abt .e → Stop)

� (� e : εend p l • fin.e → Skip)

in (bsm p l |[A]|X) \ hide p l

∧ hide p l =
⋃
{ s : states∼(l p) • αtrans(s.in ∪ s.out ∪ s.error) }

A Process Semantics for BPMN 365

bsm : PName �→ Local �→ Process

∀ p : PName; l : Local •
bsm p l =

(‖ s : { s : (states∼(l p)) | s.type �= start } •
(αstate s l ∪ { i : εend p l • fin.i }
∪ (if (s.type /∈ ran abort) then ∅ else { abt .(abort∼s.type) }) ◦
if (s.type ∈ ran end)

then ((ρstate s o
9 fin.(end∼s.type) → Skip)

� (� e : εend p l \ { end∼s.type } • fin.e → Skip))

else if (s.type ∈ ran abort)

then ((ρstate s o
9 abt .(abort∼s.type) → Stop) � ρend p l)

else let X = ((ρstate s � ρend p l) in

(if s.loop = 0 then X

else (ρloop p s l |[αtrans s.in ∪ { i : εend p l • fin.i }]| X))))

|[αstart p l ∪ { i : εend p l • fin.i }]|
� s : { s : states∼(l p) | s.type = start } • (ρstate s o

9 ρend p l))

We observe that the processes corresponding to a start, an end or an abort state
are the only non-recursive processes; a start, an end or an abort activity can occur
only once, while it is possible for all other states to occur many times within a
single process instance. The function εend returns the set of numbers defined by
each of the end states within the diagram’s syntax, while εabort returns the set of
numbers defined by each of the abort states. We apply external choice over the
processes corresponding to states with a terminating process synchronising on all
end states. This ensures that all processes terminate at the end of the business
process execution. The function αstart returns the set of events corresponding to
all outgoing transitions of all start states within the diagram’s syntax.

αstart : PName �→ Local �→ PEvent

εend : PName �→ Local �→ P N

∀ p : PName; local : Local •
αstart p local =

⋃
{ s : states∼(local p) | s.type = start • αtrans(s.out) }

∧ εend p local = { s : states∼(local p) | s.type ∈ ran end • end∼s.type }

ρend : PName �→ Local �→ Process

εabort : PName �→ Local �→ P N

∀ p : PName; local : Local •
ρend p local = (� e : εend p local • fin.e → Skip))

∧ εabort p local =

{ s : states∼(local p) | s.type ∈ ran abort • abort∼s.type }
∪

⋃
{ s : states∼(local p) | s.type ∈ ran bpmn •

εabort (bpmn∼s.type) local }

The function ρloop maps each state of type task and bpmn to a process which
limits the number of iterations of the state.

366 P.Y.H. Wong and J. Gibbons

ρloop : PName �→ State �→ Local �→ Process

∀ p : PName; s : State; local : Local •
ρloop p s local =

let Y = � i : αtrans s.in • i → Skip

M = ρextmsg s.in NoEnds

X (n) = n > 0 & (Y o
9 X (n − 1) � (M o

9 Y o
9 X (n − 1)) � ρend p local)

� n ≤ 0 & ρend p local

in X (loopMax)

We define the function ρmiseq to map each state of type miseq or miseqs. The
following describes the function ρmiseq .

ρmiseq : State �→ Local �→ Process

∀ s : State; local : Local • ∃ t1, t2 : Trans; e1, e2 : Event ; n : N •
(t1, t2) = miseqtst s ∧ (e1, e2) = ((εtrans t1).1, (εtrans t2).1)

∧ (if s.type ∈ ran miseq then n = (miseq∼s.type).2 else n = (miseqs∼s.type).2)

∧ ρmiseq s local =

let SY = αtrans(s.out ∪ s.error) ∪ { e1, e2 }
in ((Cq(n, s, e1, e2) |[SY]| Seq(n, s, local))� AJ (s.error)) \ { e1, e2 }

The function ρmiseq is constructed by partially interleaving a control process Cq

with process Seq, which models the multiple instances of task or subprocess,
specified by the contructor function, executing sequentially.

Seq(i , s, l) =

let tpe = if s.type ∈ ranmiseq then task (miseq∼s.type) else bpmn (miseqs∼s.type)

st = 〈|in � { t1 }, type � tpe, out � { t2 }, error � s.error , loop � 1 |〉
in i > 0 & ((ρstate st l) o

9 Seq(i − 1, s, l)) � XS(s.out)

The process Cq is triggered initially by one of the incoming transitions of the
multiple instance state. Instances are triggered sequentially.

Cq(n, s, e, f) =

((XJ (s.in) � f → Skip) o
9

((n > 1) & (e → Cq(n − 1, s, e, f)) � n = 1 & (e → f → XS(s.out)) � XS(s.out)))

4.3 Processes Corresponding to Gateways

We now define some CSP processes that correspond to the behaviour of each of
the gateway states.

Exclusive Choice Gateway. Processes XS(tn) and XJ (tn) model the behaviour
of outgoing and incoming transitions of the state type xgate. Note that although
each outgoing transition of the state type xgate is guarded, the choice of its
incoming transitions is determined by the behaviour of the preceding states.

XS(tn) = � e : εtrans(| tn |) • (if e.2 then e.1 → Skip else Skip)

XJ (tn) = � e : αtrans tn • e → Skip

A Process Semantics for BPMN 367

We also define the process AJ (tn) to model the behaviour of incoming transitions
of the state type abort.

AJ (tn) = � e : αtrans tn • e → Stop

Parallel Gateway. Process ASJ (tn) models the behaviour of outgoing and in-
coming transitions of the state type agate. Note that all outgoing transitions are
enabled and all incoming transitions are required in this state type.

ASJ (tn) = ||| e : αtrans tn • e → Skip

Inclusive Choice Gateway. Process OSJ (tn) models the behaviour of out-
going and incoming transitions of the state type ogate. Note that all outgoing
transitions are guarded in the state type ogate, one or more transitions are en-
abled and the choice of transitions is based on the value of their guards. All its
incoming transitions are also guarded; the choice of transitions is based on the
value of their guards.

OSJ (tn) = ||| e : εtrans(| tn |) • (if e.2 then e.1 → Skip else Skip)

4.4 Processes Corresponding to Transitions, Types and States

Functions ρout and ρin take a state and return the process describing the be-
haviour of all outgoing and incoming transitions, respectively.

ρout : State �→ Process

ρin : State �→ Process

ρout = (λState • if (type = asplit) then ASJ (out)

else if (type = osplit) then OSJ (out) else XS(out))

ρin = (λ State • if (type ∈ ran abort) then AJ (in)

else if (type = ajoin) then ASJ (in)

else if (type = ojoin) then OSJ (in) else XJ (in))

The function ρtype maps the type of a given state to its corresponding process.
Since our semantics abstracts the internal flow of task states, we only model
the initialisation, the termination, message flows and any exception flow of each
task.

ρexit : State �→ Process

ρtype : State �→ Local �→ Process

ρexit = (λState •
let Y = { (e, f) : exit • (fin.e, (εtrans f).1) }
in (�(i , j) : Y • i → j → Skip) � XJ (error))

ρtype = (λ State • (λ l : Local •
if (type ∈ ran task)

then if (error = ∅) then εtask (task∼type) else εtask (task∼type) � XJ (error)

else if (type /∈ ran task ∪ ran bpmn) then Skip

else (if (error = ∅) then εpname(bpmn∼type) → bsem (bpmn∼type) l

else εpname (bpmn∼type) → (bsem (bpmn∼type) l � XJ (error)))))

368 P.Y.H. Wong and J. Gibbons

We define the function ρstate which returns the process corresponding to the
behaviour of a given state; this function essentially maps each state to the
sequential composition of the processes corresponding to the state’s incoming
transitions, type and outgoing transitions.

ρstate : State �→ Local �→ Process

ρstate = (λ s : State • (λ l : Local •
if (type ∈ ran task) then (ρin s o

9 ρtype s l o
9 ρout s)

else if (type ∈ ran bpmn)

then (ρin s o
9 ((ρtype s l |[{ e : exit • fin.(e.1) } ∪ αtrans error]|

ρexit s l) |[{ o : out • (εtrans e).1 }]| ρout s))))

else if (type ∈ ran miseq ∪ ran miseqs) then ρmiseq s l

else if (type = start) then ρout s

else if (type ∈ ran end ∪ ran abort) then ρin s

else ρin s o
9 ρout s))

We have implemented the semantics described in this paper as a prototype tool
using the functional programming language Haskell. Readers may find a copy of
the implementation from our web site1. The tool inputs a XML serialised repre-
sentation of BPMN diagram from the JViews BPMN Modeler [9], and translates
it into an ASCII file containing CSP processes representing its behaviours ex-
pressed in machine-readable CSP [16].

5 Revisiting the Example

5.1 Semantics of the Airline Reservation Application

We use the example of an airline reservation system in Section 3.2 to demonstrate
how our semantic function may be applied to the syntactic definition described
in Section 3, and hence provide a semantics to support formal analyses. We
define set J to index the processes corresponding to the states in the diagram.

J = { start , verify , reserve, booking , notify , timeout , end , abort }

By applying our semantic function to the diagram’s syntactic description, we
obtain the process corresponding to it.

Airline = let X = � i : (αY \ {fin.1, abt .1 }) •
(i → X � abt .1 → Stop � fin.1 → Skip)

Y = (‖ j : J • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

where for each j in J , the process P(j) is as defined below and αP(j) is the set
of possible events performed by P(j). We use n, ranging over N, to denote the

1 http://www.comlab.ox.ac.uk/peter.wong/observation/

http://www.comlab.ox.ac.uk/peter.wong/observation/

A Process Semantics for BPMN 369

number of instances of the task verify, as specified by the second argument of
constructor function miseq.

P(verify) =

let

Ts = { i : { 1 . . n } • (in.i , out .i) }
IC (T) = �(i , j) : T • i → (j → Skip ||| Cn(T \ { i , j }))
Cn(T) = #T = 1 & (�(i , j) : T • i → j → init .reserve → Skip)

� #T > 1 & IC (T) � init .reserve → Skip

MTask = ‖[{ init .reserve }](i , j) : Ts •
((i → starts.verify → j → Skip o

9 init .reserve → Skip) � init .reserve → Skip)

in ((init .verify → Skip o
9

(MTask |[
⋃
{ (i , j) : Ts{ i , j } } ∪ { init .reserve }]|

(init .reserve → Skip � Cn(Ts)))) o
9 P(verify)) � fin.1 → Skip

P(start) = (init .verify → Skip) o
9 (fin.1 → Skip)

P(reserve) = (init .reserve → Skip o
9 (starts.reserve →

(Reserve |[{fin.2 }]| fin.2 → init .booking → Skip)

|[{ init .booking }]| init .booking → Skip) o
9 P(reserve))

� (fin.1 → Skip)

P(booking) = (init .booking → Skip o
9 (starts.booking → ((Booking � init .timeout → Stop)

|[{ fin.3, fin.4, init .timeout }]| (init .timeout → Stop

� fin.3 → init .notify1→ Skip � fin.4 → init .end → Skip))

|[{ init .notify1, init .end }]| (init .notify1→ Skip � init .end → Skip)) o
9

P(booking)) � (fin.1 → Skip)

P(timeout) = (init .timeout → Skip o
9 starts.timeout → Skip o

9

init .notify2 → Skip o
9 P(notify)) � (fin.1 → Skip)

P(notify) = ((init .notify1 → Skip � init .notify2→ Skip) o
9

starts.notify → Skip o
9 init .abort → Skip o

9 P(notify)) � (fin.1 → Skip)

P(end) = (init .end → Skip o
9 fin.1 → Skip)

P(abort) = (init .abort → Skip o
9 abt .1 → Stop) � (fin.1 → Skip)

The process Reserve describes the semantics of the subprocess Reservation upon
its syntactic description. We define set J ′ to index the processes corresponding
to the states of the subprocess:

J ′ = { start1, reseat , end1 }
Reserve = let X = � i : (αY \ { fin.2 }) • (i → X � fin.2 → Skip)

Y = (‖ j : J ′ • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

370 P.Y.H. Wong and J. Gibbons

where for each j in J ′, the process P(j) is as defined below; we write m, ranging
over N, to denote the number of iterations in the multiple instance Reserve Seat :

P(start1) = (init .rseat → Skip o
9 fin.2 → Skip)

P(reseat) =

let X (n) = ((init .reseat → Skip � init .out → Skip) o
9

(n > 1 & init .in → X (n − 1)

� n = 1 & init .in → init .out → init .end1 → Skip

� init .end1 → Skip � n = m & init .end1 → Skip))

A(n) = n > 0 &

(init .in → Skip o
9 starts.reseat → Skip o

9 init .out → Skip o
9 A(n − 1))

� init .end1 → Skip

in ((X (m) |[{ init .end1, init .in, init .out }]|A(m)) o
9 P(reseat)) � fin.2 → Skip

P(end1) = (init .end1 → Skip o
9 fin.2 → Skip)

The process Booking describes the semantics of the subprocess Booking upon
its the syntactic description. It is defined as follows, where we define set J ′′ to
index the processes corresponding to the states of the subprocess:

J ′′ = { start2, xs3, pbooking , cancel , ticket , end3, end4 }Booking =

let X = � i : (αY \ {fin.3, fin.4 }) •
(i → X � (fin.3 → Skip � fin.4 → Skip))

Y = (‖ j : J ′′ • αP(j) ◦ P(j))

in (Y |[αY]|X) \ {|init |}

where for each j in J ′′, the process P(j) is as defined below:

P(start2) = (init .xs3 → Skip o
9 P(start4)) � (fin.3 → Skip � fin.4 → Skip)

P(xs3) = (init .xs3 → Skip o
9 (init .pbooking → Skip � init .cancel → Skip) o

9 P(xs3))

� (fin.3 → Skip � fin.4 → Skip)

P(pbooking) = (init .pbooking → Skip o
9 starts.pbooking → Skip o

9 init .ticket → Skip o
9

P(pbooking)) � (fin.3 → Skip � fin.4 → Skip)

P(cancel) = (init .cancel → Skip o
9 starts.cancel → Skip o

9 init .end3 → Skip o
9

P(cancel)) � (fin.3 → Skip � fin.4 → Skip)

P(ticket) = (init .ticket → Skip o
9 starts.ticket → Skip o

9 init .end4 → Skip o
9

P(ticket)) � (fin.3 → Skip � fin.4 → Skip)

P(end3) = (init .end3 → Skip o
9 fin.3 → Skip) � fin.4 → Skip

P(end4) = (init .end4 → Skip o
9 fin.4 → Skip) � fin.3 → Skip

5.2 Verifying Consistency of the Airline Reservation System

CSP’s behavioural semantics admits refinement orderings under reverse contain-
ment, therefore a behavioural specification R can be expressed by constructing
the most non-deterministic process satisfying it, called the characteristic process

A Process Semantics for BPMN 371

Fig. 3. A BPMN diagram describing the behavioural property defined by process Spec1

PR. Any process Q that satisfies specification R has to refine PR, denoted by
PR # Q . For example, Figure 3 is a specification of the diagram in Figure 2,
abstracting details of subprocesses Reserve and Booking in the original diagram
in Figure 2 into a task state.

Letting K = { start3, reserve2, booking2, timeout2, notify2, abort1, end1 }, the pro-
cess Spec1 is defined as follows:

Spec1 = let

X = � i : (αY \ {fin.1, abt .1 }) •
(i → X � (abt .1 → Stop) � (fin.1 → Skip))

Y = ‖ x : K • αP(x) ◦ P(x)

in (Y |[αY]|X) \ {|init |}

where for each k in K , the process P(k) is as defined below:

P(start3) = (init .reserve2 → Skip) o
9 (fin.1 → Skip)

P(reserve2) = ((init .reserve2 → Skip) o
9 starts.reserve → Skip o

9 init .booking2 → Skip o
9

P(reserve2)) � (fin.1 → Skip)

P(booking2) = (init .booking2 → Skip o
9 starts.booking → (Skip � init .timeout2 → Stop) o

9

(init .end1 → Skip � init .notify2→ Skip) o
9 P(booking2)) � (fin.1 → Skip)

P(timeout2) = ((init .timeout2 → Skip) o
9 starts.timeout → Skip o

9 init .notify3 → Skip o
9

P(timeout2)) � (fin.1 → Skip)

P(notify2) = ((init .notify2→ Skip � init .notify3 → Skip) o
9

starts.reserve → Skip o
9 init .abort1 → Skip o

9 P(notify2)) � (fin.1 → Skip)

P(end1) = (init .end1 → Skip o
9 fin.1 → Skip)

P(abort1) = (init .abort1 → Skip o
9 abt .1 → Stop) � (fin.1 → Skip)

Note that CSP’s traces model is insufficient to verify our models against formal
specifications. If we insist on using the traces model, then under traces refinement
any process P that has the trace-set { 〈〉 } will refine and hence satisfy process
Spec1. Any process which corresponds to a broken or an illegal BPMN diagram
might in fact have this trace-set; this demonstrates the inadequacy of the traces
model. We therefore use the stable failures model to compare process Airline

with Spec1.

372 P.Y.H. Wong and J. Gibbons

Spec1 #F Airline \ (αAirline \ αSpec1)

This refinement captures the claim that our semantic model is consistent with
respect to different levels of abstraction and Airline is indeed a refinement of the
abstraction defined by Spec1. Due to the specific semantic definition presented
in this paper, we are able to verify refinement assertions such as this by model
checking using FDR [7].

The above refinement assertion motivates the following generalisation of re-
finement ordering upon BPMN diagrams. We introduce two types of refinement
based on CSP’s stable-failures model and the hierarchical composition of BPMN
diagrams. We first introduce the notion of hierarchical refinement, where the
specification diagram is an abstraction of the implementation diagram via col-
lapsing subprocess states.

Definition 1. Hierachical Refinement Given two BPMN diagrams,
described by the names n1 and n2, and the specification environment l1 and l2
respectively, diagram n1 hierachically refines diagram n2 iff

bsem n2 l2 #F (bsem n1 l1 \ S)

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which are defined in diagram n1, and have
been abstracted by collapsing them into task states in diagram n2.

This refinement ordering semantically relates different levels of abstraction be-
tween BPMN diagrams. Now we can introduce the notion of hierarchical inde-
pendence upon behavioural specification.

Definition 2. Hierarchical Independence A diagram n1 in the environment
l1 is a hierarchically independent specification of diagram n2 in the envi-
ronment l2 iff for all names m and specification environments k , the following
expression holds:

bsem m k #F (bsem n2 l2 \ S) ⇒ bsem n1 l1 #F bsem m k

where S is the set of events corresponding to the alphabet of states that are
contained in the subprocess states, which have been collapsed.

Hierarchical independence allows us to reason about a BPMN diagram against
a behavioural specification by verifying a more abstract version of that diagram
against the specification. However, sometimes it is not only convenient to hide
details of subprocess states, but it is neccessary to also abstract details which
are irrelevant to the behavioural property we are interested in.

Definition 3. Partial Refinement Given two BPMN diagrams, described by
the names n1 and n2, and the specification environments l1 and l2 respectively,
diagram n1 partially refines diagram n2 iff

bsem n2 l2 #F (bsem n1 l1 \ S)

A Process Semantics for BPMN 373

where S is the set of event corresponding to the alphabet of all states that have
been abstracted.

In our example, the diagram in Figure 2 is a partial refinement of the diagram
in Figure 3. Conversely we say the diagram in Figure 3 is a partial specification
of the diagram in Figure 2. Moreover, these refinement claims may be checked
automatically by FDR. These relationships allow a business process developer
to focus on the specification of part of the diagram.

6 Conclusion

In this paper, we have presented a process semantics in the language of CSP for
a subset of BPMN. We have illustrated by examples how this semantic model
may be used to verify that one BPMN diagram is consistent with another, which
might be its abstract specification using the same graphical notation. Our seman-
tic model makes it possible to formally analyse and compare BPMN diagrams,
and to assert correctness conditions that can be verified using a model checker.
Like any development of a complex system, the application of refinement in
business process design means that development from an abstract design into an
implementation becomes incremental.

The CSP process semantics of a BPMN workflow can be constructed automat-
ically from a simple syntactic presentation of the diagram. We have used Z as a
syntactic vehicle, but something like XMI would work too. We do not expect the
designer to write in this syntax directly, but to generate it from the diagrammatic
notation, annotated with attribute values such as guards and multiplicities.

Future work will include augmenting our semantics with a well-defined trans-
action and compensation handling, perhaps building on Butler’s compensating
CSP [3], to provide a formal semantics for the complete BPMN; formalising
Property Specification Patterns [6] in CSP, specifically to allow such patterns
to be employed for reasoning about behavioural properties of BPMN processes;
and automating the semantic translation to facilitate automatic verification.

Acknowledgements

This work is supported by a grant from Microsoft Research. The authors would
like to thank anonymous referees for useful suggestions and comments.

References

1. Bolton, C., Davies, J.: Activity graphs and processes. In: Proceedings of the Second
International Conference on Integrated Formal Methods, pp. 77–96 (2000)

2. Business Process Execution Language for Web Services, Version 1.1 (May 2003),
http://www.ibm.com/developerworks/library/ws-bpel

3. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525. Springer, Heidelberg (2005)

http://www.ibm.com/developerworks/library/ws-bpel

374 P.Y.H. Wong and J. Gibbons

4. Dijkman, R.M.: Choreography-Based Design of Business Collaborations. BETA
Working Paper WP-181, Eindhoven University of Technology (2006)

5. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Technical Report Preprint 5969, Queensland University
of Technology (2007)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-state Verification. In: 2nd Workshop on Formal Methods in Software Prac-
tice (1998)

7. Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Man-
ual (1998), www.fsel.com

8. Foster, H.: Mapping BPEL4WS to FSP. Technical report, Imperial College, London
(2003)

9. ILOG JViews BPMN Modeler, http://www.ilog.com/
10. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing WSBPEL Business

Processes using Process Algebra. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653. Springer, Heidelberg (2005)

11. Koshkina, M.: Verification of business processes for web services. Master’s thesis,
York University, Toronto (October 2003)

12. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming 70(1) (January 2007)

13. OMG. Business Process Modeling Notation (BPMN) Specification (February
2006), www.bpmn.org

14. Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Translating
BPMN to BPEL. Technical Report BPM-06-02, BPM Center (2006)

15. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages. In: Proceedings 18th Inter-
national Conference on Advanced Information Systems Engineering, pp. 521–532
(2006)

16. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

17. W3C. Web Service Choreography Interface (WSCI) 1.0 (November 2002),
http://www.w3.org/TR/wsci

18. Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN (extended version)
(2007), www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf

19. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996)

www.fsel.com
http://www.ilog.com/
www.bpmn.org
http://www.w3.org/TR/wsci
www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 375 – 396, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Descriptive Semantics of UML

Lijun Shan1 and Hong Zhu2

1 Dept of Computer Science, National Univ. of Defence Tech, Changsha, 410073, China
lijunshan@brookes.ac.uk

2 Department of Computing, Oxford Brookes University, Oxford OX33 1HX, UK
hzhu@brookes.ac.uk

Abstract. This paper proposes a novel approach to the formal definition of
UML semantics. We distinguish descriptive semantics from functional seman-
tics of modelling languages. The former defines which system is an instance of
a model while the later defines the basic concepts underlying the models. In this
paper, the descriptive semantics of class diagram, interaction diagram and state
machine diagram are defined by first order logic formulas. A translation tool is
implemented and integrated with the theorem prover SPASS to enable auto-
mated reasoning about models. The formalisation and reasoning of models is
then applied to model consistency checking.

1 Introduction

With the rapid development of model-driven software development, concerns have
been expressed on the semantics of modelling languages such as UML. It is widely
recognised that a clear and rigorous semantics of UML is indispensable for rigorous
modelling. Unfortunately, in spite of the numerous efforts in the past decade, formal
specification of UML has not been satisfactory. This paper proposes a novel approach
to defining formal semantics of modelling languages. It is applied to UML class dia-
gram, interaction diagram and state machine diagram. The usefulness of the approach
is demonstrated by its implementation in an automated tool and its application to
model consistency checking.

The paper is organised as follows. Section 2 describes the proposed approach and
discusses the related work. Section 3 elaborates our approach by a formal definition
of UML class diagram. Section 4 further discusses how to deal with multiple views
defined by separate metamodels and illustrates our approach through defining the
semantics of interaction diagram and state machine. Section 5 applies the formal se-
mantics to model consistency checking. Section 6 presents an automated tool, which
translates UML models into first order logic and uses a theorem prover SPASS [1] to
reason about models. Section 7 concludes the paper and discusses future work.

2 Proposed Approach

2.1 Basic Concepts

As Seidewitz pointed out [2], a software model, like models in any other scientific
disciplines, is ‘a set of statements about some system under study’, where statements

376 L. Shan and H. Zhu

are expressions that can be evaluated to a truth value with respect to the modelled
systems. Further, Seidewitz stated that a model’s meaning has two aspects. One is the
model’s relationship to the things being modelled. This meaning is implied when say-
ing ‘this model means that the Java program must contain these classes’. In this sense,
a model is mapped to a collection of systems in a subject domain. By subject domain,
we mean a set of systems that a modelling language intends to model, e.g. the collec-
tion of Java software systems. Another example of subject domain is the collection of
real world systems described with OO concepts. In these subject domains, the truth of
a statement like ‘a system contains these classes’ can be judged.

The other aspect of models’ meaning is about the functions and properties of sys-
tems being modelled. This meaning is indicated when saying ‘an inheritance relation
means that every instance of the subclass is also an instance of the superclass’. On
this aspect, the meaning of a model is concerned with the basic concepts such as what
is a class, and their properties and behaviours such as how the instances of a class
behave. Semantics on this aspect determines the functions of the systems that satisfy a
model, and hence whether two models are functionally equivalent even if they look
different. To distinguish these two aspects of meanings of models, we call the former
descriptive semantics and the later functional semantics.

From this point of view, we can examine the weakness in the definition of UML
semantics. In the UML specification [3], the ‘semantics’ sections explain properties
and structure of each metaclass. Little has been said about how a model is mapped to
a collection of systems, or equivalently, how to judge whether a system satisfies a
model. Take a simple class diagram that contains one and only one class node labelled
with identifier A as an example. It can be interpreted in any of the following ways.

− there is only one class in the system and it is named A,
− there is at least one class named A in the system (which may have other classes),
− there is only one class in the system and its name does not matter,
− there is at least one class in the system and its name does not matter.

The official UML documentation does not specify which interpretation of this sim-
plest class diagram is correct. As Kent et al pointed out, a UML model ‘typically has
more than one possible implementation’, and such ‘underspecification’ must be re-
flected by explicit definitions of the semantics [4]. However, formalisation of UML
descriptive semantics is difficult due to the following reasons.

First, UML is not only for modelling software systems, but also for modelling real
world systems, organisations and business processes. Any domain described with OO
concepts can be a subject domain. This feature enables UML to bridge the gap be-
tween problem domains in the real world and the computation domain, and to model
different problem fields including software, hardware, business process, etc. A formal
definition of UML semantics must enable such multiple interpretations.

Second, when the full-fledged UML is considered, even the mapping from UML
models to systems in a fixed subject domain is non-trivial due to the large set of lan-
guage elements with complicated interrelations. It is also recognised by many re-
searchers that the official definition of UML contains errors, hence, it evolves rapidly.

Third, UML employs the multiple view principle of modelling. A large number of
different types of diagrams can be drawn to model a system from different perspec-
tives. Each type of diagram is defined by one metamodel. These metamodels are

 A Formal Descriptive Semantics of UML 377

interrelated through references and inheritances between metaclasses. The connec-
tions between metamodels further complicate the semantics of the language and also
cause a potential serious problem of model inconsistency. A formal definition of
UML semantics must be able to deal with such cross references between metamodels.

Another major cause of difficulty comes from the abstraction and under-
specification nature of models [4]. UML is intended to be used in different stages of
software engineering to describe systems at different levels of abstraction. For exam-
ple, a model produced at requirements stage should be more abstract than a model
built at design stage. The formalisation of UML semantics must reflect the use of the
language at different levels of abstraction.

Finally, one of the most important features of UML language is its flexibility. This
is achieved by at least two mechanisms. One is the extension mechanism with which
new metaclasses can be introduced through the definition of profiles. The other is the
under-definition of language elements.

2.2 Related Work

Addressing the underspecification and ambiguity in UML’s semantics, remarkable
efforts have been made in the past decade to formalise UML semantics. As far as we
know, all of them are about the functional semantics or aim at ‘a deeper understand-
ing of OO concepts’ [5]. The following proposals are among the most well-known.

On the formalisation of class diagram, which is considered the most important type
of diagrams in UML, a number of proposals have been advanced. The work by Evans
et al. defines classifier, association, generalisation and attribute etc. in Z schemas [5].
Relations between objects and classifiers are specified as axioms. Diagrammatical
transformation rules are defined as deduction rules to prove properties of UML models.
See [6] for a survey of different approaches to formalising class diagram with Z or
Object-Z. First order logic (FOL) and description logics (DLs) are used to formalise
class diagram [7]. By encoding UML class diagrams in DL knowledge bases, DL rea-
soning systems can be used to reason about class diagrams. Formalisation of other
types of diagrams has also been investigated, especially on state machine diagram. In
[8], a rule-based operational semantics of state machine is proposed based on transition
systems. Another work on operational semantics of state machine is reported in [9].

Great efforts have been made on formalising different diagrams in one semantic
framework. Considering the semantics of a UML model as a set of acceptable struc-
tured process, the authors of [10] map class diagrams and state machines into alge-
braic specifications in Casl-ltl [11]. Another work aiming at integrated semantics of
class diagram, object diagram and state machine diagrams is based on graph trans-
formation [12].

To bridge the gap between UML and formal methods, the extensibility mechanism
of UML profile is used to define specialisations of UML. In [13], a profile UML-B is
designed so that the semantics of specialised UML entities is defined via a translation
into B. In [14], an integrated formal method combining the process algebra CSP with
the specification language Object-Z is used as the intermediate specification language
to link UML and Java. A UML profile for CSP-OZ is designed with the aim of gener-
ating part of the CSP-OZ specifications from the specialised UML models.

378 L. Shan and H. Zhu

The above existing methods define the semantics of UML by mapping models into
a specific semantic domain, such as labelled transition systems, or OO software sys-
tems specified in a formal notation such as Z. The properties of OO systems are speci-
fied as axioms and used to reason about UML models. In other words, they mostly
addressed the functional semantics of UML. Each method focuses on certain proper-
ties of OO systems, hence a certain subset of UML is formalised. However, it is hard
to see how these approaches could work either alone or together for the full-fledged
UML. Most importantly, the ambiguity in descriptive semantics is not addressed in
these works. Instead, their semantics formalisations are based on explicit or implicit
assumption on the descriptive semantics. Automation of translating UML models to
formal specifications to facilitate automated reasoning of UML models has not been
achieved in the existing methods.

2.3 Outline of the Proposed Approach

In this paper, we take a novel approach to formalising the semantics of UML models
by explicitly distinguishing descriptive semantics from functional semantics and
specifying them separately.

First, the descriptive semantics is defined through a mapping from UML models to
a set of first order logic statements, which are constructed from a set of predicates and
functions via logic connectives and quantifiers. Predicates and functions represent the
basic concepts of the modelling language. For example, predicate Class(x) is defined
to represent the concept class in UML. Interrelations between basic concepts as speci-
fied in UML metamodels are characterised by a set of axioms, called axioms of de-
scriptive semantics in the sequel. The satisfaction of a model by a system is defined as
the evaluation of the truth of the statements in the context of the system, provided that
how to evaluate these predicates and functions is known.

Second, the functional semantics of UML is defined for the predicates and func-
tions. The properties and dynamic behaviours of modelled systems can be character-
ised by a set of axioms called axioms of functional semantics. Thus, the functional
semantics of a model determines the functions and runtime behaviours of the systems
that satisfy a model.

Formally, we have the following structure of semantics for a modelling language.

Definition 1. (Semantics of a modelling language) A formal semantic definition of a
modelling language consists of the following elements.

− A signature Sig, which defines a formal logic system;
− A set AxmD of axioms about the descriptive semantics, which is in the formal logic

system defined by Sig;
− A set AxmF of axioms about the functional semantics, which is also in the formal

logic systems defined by Sig;
− A mapping F from models to a set of formulas in the formal logic system defined

by Sig. The formulas are the statements for the descriptive semantics of the model;
− A mapping H from models to a set of formulas in the formal logic system defined

by Sig. The formulas represent the hypothesis about the context in which the de-
scriptive semantics is interpreted.

 A Formal Descriptive Semantics of UML 379

In the above definition, the signature defines the symbols that can be used in the for-
mulas and axioms. The evaluation of a first order logic formula is as usual.

Definition 2. (Semantics of a model)
Given a semantics definition of a modelling language as in Definition 1, the semantics
of a model M under the hypothesis H, written SemH(M), is defined as follows.

SemH(M) = AxmD∪ AxmF∪ F(M) ∪ H(M)

where F(M) and H(M) are the sets of statements obtained by applying the semantic
mappings F and H to model M, respectively. The descriptive semantics of a model M
under the hypothesis H, written DesSemH(M), is defined as follows.

DesSemH(M) = AxmD∪ F(M) ∪H (M)

Given a semantics definition of a modelling language in the above framework, rea-
soning about the properties of a model can be defined as logical inference as follows.

Definition 3. (Properties of a model)
Let SemH(M) be the semantics of a model M. M has a property P (represented as a
formula in the logic system defined by Sig) under the semantics definition SemH(M)
and the hypothesis H, if and only if AxmD∪AxmF∪F(M) ∪H(M) |− P in the formal
logic system. Similarly, we say that M has a property P in descriptive semantics, if
and only if AxmD∪F(M) ∪H(M) |− P in the formal logic system.

A key concept of the semantics of modelling languages is the satisfaction of a model
by a system. Before defining this concept, let’s first define the notion of subject do-
main and the interpretation of a formal logic in a subject domain.

Definition 4. (Subject domain)
A subject domain Dom of signature Sig with an interpretation Eva is a triple <D, Sig,
Eva>, where D is a collection of systems on which the formulas of the logic system
defined by Sig can be evaluated according to a specific evaluation rule Eva. The value
of a formula f evaluated according to the rule Eva in the context of system s∈D, writ-
ten as Eva(f, s), is called the interpretation of the formula f in s. We write s|=Evaf, if a
formula f is evaluated to true in a system s∈D, i.e. s|=Evaf iff Eva(f, s)= true.

When there is no risk of confusion, we will omit the subscript in s|=Evaf. For a set F of
formulas, we write s|=F to denote that for all f in F, s|=f.

Definition 5. (Satisfaction of a model)
Let Sig be a given signature and Dom a subject domain of Sig. A system s in D satis-
fies a model M according to a semantic definition SemH(M) if s|= SemH(M), i.e. for all
formulas f in SemH(M), s|=f.

In the remainder of the paper, we will elaborate the approach by defining the descrip-
tive semantics of UML class diagram, interaction diagram and state machine diagram.
We will also demonstrate the application of the semantic definition to model consis-
tency checking.

380 L. Shan and H. Zhu

3 Descriptive Semantics of Class Diagram

3.1 Metamodel

Fig. 1 shows the simplified metamodel on which our formal definition of the descrip-
tive semantics of UML class diagrams is based.

3.2 Derivation of Signature

Given a metamodel, the signature of a formal logic system can be induced by apply-
ing the derivation rules defined as follows.

− Signature Rule 1: Unary predicates. For each metaclass named MC in the meta-
model, we define a unary atomic predicate MC(x).

− Signature Rule 2: Binary predicates. For each association named MA between two
metaclasses X and Y in the metamodel, a binary predicates MA(x, y) is defined to rep-
resent the relation between elements of type X and Y.

Mult iplic it yElement

ValueSpecificat ion

+upperValue+lowerValue

TypedElement

Type
+type

Classifier

+isAbstract: Boolean
Generalisat ion

+general

DirectedRelat ionship
Feature

+isStatic: Boolean

St ructuralFeature Behav iouralFeature

Parameter

+direction: ParameterDirectionKind
+ownedParameter

Operat ion ClassProperty

+aggregation: AggregationKind

+ownedAttribute
0..1*

A ssociat ion

+memberEnd
2..*

+ownedOperation

0..1*

Relat ionship

ParameterDirect ionKind
<<enumeration>>

+in
+out
+inout
+return

A ggregat ionKind
<<enumeration>>

+none
+shared
+composite

Boolean
<<enumeration>>

+t
+f

DataType

Signal

+specific

Interface

+ownedOperation

+ownedAttribute

NamedElement

Visibilit yKind
<<enumeration>>

+public
+private
+protected
+package

+associateTo

Fig. 1. Metamodel of Class Diagram

A predicate MC(x) means that element x is of type MC. For example, a unary
predicate Class(x) is defined to represent the metaclass Class in Fig. 1. A binary
predicate MA(x,y) means that elements x and y are related by the relation MA. For
example, a binary predicate specific(x, y) is defined to represent the association
named specific from metaclass Generalisation to Classifier in Fig. 1.

Constants and functions in the signature are also derived from the metamodel.

− Signature Rule 3: Constants. For each enumeration value EV given in an enumera-
tion metaclass ME in the metamodel, a constant EV is defined.

 A Formal Descriptive Semantics of UML 381

For example, two enumeration values t and f are defined in the enumeration meta-
class Boolean in Fig. 1. Thus, two constants t and f are defined.
− Signature Rule 4: Functions. For each meta-attribute MAttr of type MT in a meta-
class MC, a function MAttr is defined with domain MC and range MT.

For example, in Fig. 1, metaclass Classifier has an attribute isAbstract of type Boo-
lean. Thus, a function isAbstract is defined on domain Classifier and range Boolean.
A statement isAbstract(x)=t means element x’ property on isAbstract is t.

Table 2 summarises the constants representing enumeration values and their types,
as well as the functions derived from the metamodel in Fig. 1. These functions are
partial, i.e. they can be undefined on some elements in a model.

The interpretation of the functions and predicates must be defined in the context of
a subject domain. Take the set of C++ programs as an example of subject domain.
Given a C++ program, the predicate Class(User) is true if User is a class in the pro-
gram. The statement isAbstract(User) is true when the class User in the program is
declared to be abstract. In this paper, we leave the definition of the interpretation open
so that a model can be interpreted in different subject domains.

Table 1. Predicates for Class Diagram

Predicate Meaning
ValueSpecification(x) x has type ValueSpecification
MultiplicityElement(x) x has type MultiplicityElement
StructuralFeature(x) x has type StructuralFeature
TypedElement(x) x has type TypedElement
Feature(x) x has type Feature
BehaviouralFeature(x) x has type BehaviouralFeature
NamedElement(x) x has type NamedElement
Type(x) x has type Type
Classifier(x) x has type Classifier
Relationship(x) x has type Relationship
DirectedRelationship(x) x has type DirectedRelationship
Parameter(x) x has type Parameter
Property(x) x has type Property
Operation(x) x has type Operation
Class(x) x has type Class
Interface(x) x has type Interface
Signal(x) x has type Signal
Generalisation(x) x has type Generalisation
Association(x) x has type Association
DataType(x) x has type DataType
ParameterDirectionKind(x) x has type ParameterDirectionKind
AggregationKind(x) x has type AggregationKind
Boolean(x) x has type Boolean
VisibilityKind(x) x has type VisibilityKind
upperValue(x, y) the relation between x and y is upperValue
lowerValue(x, y) the relation between x and y is lowerValue
type(x, y) the relation between x and y is type
general(x, y) the relation between x and y is general
specific(x, y) the relation between x and y is specific
ownedParameter(x, y) the relation between x and y is ownedParameter
ownedAttribute(x, y) the relation between x and y is ownedAttribute
ownedOperation(x, y) the relation between x and y is ownedOperation
associateTo(x, y) the relation between x and y is AssociateTo
memberEnd(x, y) the relation between x and y is memberEnd

382 L. Shan and H. Zhu

Table 2. Functions and Constants for Class Diagrams

Range Function Domain
Type Values

isStatic Feature Boolean f, t
visibility NamedElement VisibilityKind public, private, protected, package
isAbstract Classifier Boolean f, t
direction Parameter ParameterDirectionKind in, out, inout, return
aggregation Property AggregationKind shared, composite, none

3.3 Axioms

A UML metamodel is a model that defines the abstract syntax of UML diagrams. It
can also be regarded as a collection of statements that evaluate to truth values on
UML models. A UML model is syntactically valid only if all these statements are
true. Thus, they are axioms on the formal systems representing descriptive semantics
of models. We identified the following five groups of axioms.

A. Inheritance hierarchy on metaclasses
In a metamodel, concrete metaclasses define types of model elements, while abstract
metaclasses define common features of concrete metaclasses. These common features
may be specialised by concrete metaclasses. In the sequel, we call a type defined by a
concrete metaclass a concrete type, and a type defined by an abstract metaclass an
abstract type. Each element has exactly one concrete type, but may belong to a num-
ber of abstract types.

− Axiom Rule 1: Logical implication of inheritance. For an inheritance relation from
metaclass MA to MB, we have an axiom in the form of ∀x. MA(x) −> MB(x)
For example, from the inheritance relation from Class to Classifier in Fig. 1, an

axiom is derived to state that if an element has Class as its type, it also belongs to the
type Classifier. Formally, ∀x. Class(x) −> Classifier(x).
− Axiom Rule 2: Completeness of specialisations. Let MA be a metaclass in a meta-

model and MB1, MB2, …, MBk be the set of metaclasses specialising MA. We have
an axiom in the form of ∀x. MA(x) -> MB1(x) ∨ MB2(x) ∨ … ∨ MBk(x)
For example, the following axiom is derived from the metamodel in Fig. 1. It states

that if an element has Classifier as its type, it must belong to one of the 5 sub-types:
Association, DataType, Class, Interface or Signal.

∀x. Classifier(x) −>DataType(x)∨Association(x)∨Class(x)∨Interface(x)∨ Signal(x)
− Axiom Rule 3: Uniqueness of element classification. Let MC1, MC2, …, MCn be the

set of concrete metaclasses in a metamodel. For each pair of different concrete
metaclasses MCi and MCj, i≠j, we have an axiom in the following form.

∀x. MCi(x) −> ¬ MCj(x)

For example, the following axiom states that if an element has Property as its con-
crete type, it cannot be an Operation at the same time.

∀x. Property(x) −> ¬ Operation(x)

 A Formal Descriptive Semantics of UML 383

B. Navigation between element types
Let MA be an association from metaclass MC1 to MC2 in a metamodel. For the binary
predicate MA(x,y) derived from the association MA, the two parameters must be ele-
ments of type MC1 and MC2, respectively. Thus, we have the following axiom rule.

− Axiom Rule 4: Types of parameters of predicates. For each binary predicate
MA(x,y) derived from an association from metaclass MC1 to MC2 in the meta-
model, we have an axiom in the following form.

∀x,y. MA(x,y) −> MC1(x) ∧ MC2(y)

For example, the following axiom is derived from the association general from meta-
class Generalisation to Classifier in Fig. 1. It states that if predicate general(x,y) is
true, x must belong to the type Generalisation and y must belong to Classifier.

∀x,y. general(x,y) −> Generalisation(x) ∧ Classifier(y)

Similar to binary predicates, for each function MAttr, we have an axiom to specify
its domain and range.
− Axiom Rule 5: Domain and range of functions. For each function MAttr derived

from a meta-attribute MAttr of type MT in a metaclass MC, we have an axiom in
the following form.

∀x,y. MC(x) ∧ (MAttr(x) = y) −> MT(y)

For example, for the meta-attribute isAbstract of Classifier in Fig. 1, the following
axiom is derived. It states that if function isAbstract is applied on an element of the
type Classifier, the value of the function must belong to Boolean.

∀x,y. Classifier(x) ∧ (isAbstract(x) = y) ->Boolean(y)

C. Well-formedness constraints
UML class diagram is insufficient for fully defining the abstract syntax of UML. In
complementary, well-formedness constraints are specified in the UML documenta-
tion. Some of these well-formedness rules (WFR) are formally defined in OCL, which
should also be specified as axioms.

− Axiom Rule 6: Well-formedness rules. For each WFR formally specified in OCL,
we have a corresponding axiom in the first order language.
For example, a WFR in UML document is “Generalization hierarchies must be di-

rected and acyclical. A classifier cannot be both a transitively general and transi-
tively specific classifier of the same classifier.” Thus, we have the following axiom.

∀x, y. Inherit(x, y) −> ¬ Inherit(y, x)

where Inherit(x,y) is a binary predicate introduced to simplify the specification of the
axiom. It is formally defined by the following two formulas.

∀x,y. Generalisation(z) ∧ specific(z, x) ∧ general(z, y) -> Inherit(x, y)

∀x, y, z. Inherit(x, y) ∧ Inherit(y, z)-> Inherit(x, z)

Some well-formedness rules are informally defined in the UML documentation. They
cannot be easily specified in first order logic. For example, a rule for MultiplicityEle-
ment is ‘if a non-literal ValueSpecification is used for the lower or upper bound, then

384 L. Shan and H. Zhu

evaluating that specification must not have side effects’. It cannot be formally speci-
fied as an axiom.

D. Definition of enumeration values
We identified three axiom rules to characterise the information contained in each
enumeration metaclass.

− Axiom Rule 7: Distinguishability of the literal constants. For each pair of different
literal values a and b defined in an enumeration type, we have an axiom in the
form of a ≠b.
For example, the metaclass Boolean defines two literal values t and f. Thus, we

have the axiom t ≠ f.
− Axiom Rule 8: Type of the literal constants. For each enumeration value a defined

in an enumeration metaclass ME, we have an axiom in the form of ME(a) stating
that the type of a is ME.

For example, for the Boolean values t and f, we have the following two axioms.

Boolean(t), Boolean(f).

− Axiom Rule 9: Completeness of the enumeration. An enumeration type only con-
tains the listed literal constants as its values, hence for each enumeration metaclass
ME with literal values a1, a2, …, ak, we have an axiom in the form of

∀x. ME(x) -> (x = a1) ∨ (x = a2) ∨…∨ (x = ak)

For example, we have the following axiom for the Boolean metaclass.

∀x. Boolean(x) -> (x = t) ∨ (x = f)

3.4 Translating Models into First Order Logic Formulas

This subsection shows how to translate diagrammatic models to first order logic for-
mulas. We will use the class diagram in Fig. 2 as an example.

Bank

+charge(cardNum: Integer, cost: Real): Bool

Use r

+getName(): String
+pay(cost: Real)

BoxOffice

+ticketList: List

+buyTicket(seatNum: Integer)
+refundTicket()

Custom er

+cName: String
+creditCardNum: Integer

+pay(cost: Real)
+getCardNum()

Ticke t

+holder: String

+buy(customerName: String)
+refund()

Clerk

+cId: Integer

+pay(cost: Real)

+server+client

0..10..1

+businessClient

+bankServer

+bOffice

+hasTicket0..*

Fig. 2. Class Diagram in the Model Ticketing Office

 A Formal Descriptive Semantics of UML 385

A. Semantics mapping FM
For each class diagram, the following rules are applied to generate formulas.
− Translation Rule 1: Classification of elements. For each identifier id of concrete

type MC, a formula in the form of MC(id) is generated.
By applying this rule to every element in a diagram, a set of formulas are generated

to declare the classification of the identifiers. For example, the following formulas are
among those generated from the class nodes in Fig. 2.

Class(User), Class(Bank), Class(BoxOffice).

Similarly, formulas are generated by applying other unary predicates that represent
concrete types such as Property, Association, Operation, etc.
− Translation Rule 2: Properties of elements. For each element a in the model and

every applicable function MAttr that represents a meta-attribute, a formula in the
form of MAttr(a)=v is generated, where v is a’s value on the property.
For example, Clerk in Fig. 2 is a concrete class. Therefore, the following formula is

generated, which states that the value of function isAbstract on Clerk is false.

isAbstract(Clerk) = f

Table 3 lists the functions applicable on each concrete type of model elements and
the elements contained in the class diagram in Fig. 2. Applicable functions are derived
from the metamodel according to the inheritance relation between metaclasses.
− Translation Rule 3: Relationships between elements. For each related pair (e1, e2)

of elements in a model, a formula in the form of R(e1, e2) is generated to specify
the relationship by applying binary predicate R(x1, x2).
For example, the class diagram in Fig. 2 depicts a generalisation relation from class

Clerk to User. Hence, we have the formula specific(g, Clerk), where g denotes the
generalisation arrow.

Table 3. Constants representing model elements

Type Applicable functions Elements in Fig.2
Class isAbstract, visibility Bank, User, BoxOffice, Clerk, Customer, Ticket

Property
isStatic, aggregation,
visibility

name, creditCardNum, ID, ticketList, holder, client, server,
businessClient, bankServer, hasTicket, bOffice

Operation isStatic, visibility
GetName, Pay, GetCardNum, Charge, BuyTicket, Refund-
Ticket, Buy, Refund

Association isAbstract, visibility UserBoxoffice, BoxofficeTicket, BoxofficeBank
DataType isAbstract, visibility String, Integer, Bool, List
Generalisation / customerUser, clerkUser
Parameter direction, visibility cardNum, cost, seatNum
Signal isAbstract, visibility /
Interface isAbstract, visibility /
ValueSpecification / 0, 50, 1, 200

B. Hypothesis mapping HM
In addition to the above translation rules that are applied to all models, hypothesis
rules are needed to generate formulas that represent the meanings of models in spe-
cific uses of the modelling language. Their application should be determined by users

386 L. Shan and H. Zhu

according to the situation in which a model is used. The following are some examples
of such hypothesis rules.

Let e1, e2, …, ek be the set of elements of a concrete type MC in a model.
− Hypothesis Rule 1: Distinguishability of elements. The hypothesis that the elements

of type MC in the model are all different can be generated as formulas in the form
of ei ≠ej, for i≠j∈{1,2,…,k}.
For example, if it is assumed that in Fig. 2 class Clerk is different from class Cus-

tomer, the formula Clerk ≠ Customer is generated. This hypothesis is applicable if
the model is considered as a design, thus force the programmer to implement two
classes Clerk and Customer separately. However, if the model is used as a require-
ments specification, this hypothesis may not be necessary because a program with
one class implementing both Clerk and Customer can be considered as satisfying the
model.
− Hypothesis Rule 2: Completeness of elements. The hypothesis on the completeness

of elements of type MC can be generated as a formula in the following form.

∀x. MC(x) −> (x = e1) ∨ (x = e2) ∨ … ∨ (x = ek)

For example, the assumption that the model in Fig. 2 contains all classes in the mod-
elled system can be specified as follows.

∀x. Class(x) −> (x = Ticket) ∨ (x = Clerk) ∨ (x = Customer)

∨ (x = User) ∨ (x = Bank) ∨ (x = BoxOffice)

This hypothesis on the completeness of classes is applicable when a model represents
a system in reverse engineering or as a detailed design. However, when a model is
used as requirements specification, an implementation of the system may introduce
additional classes and still be regarded as satisfying the requirements. In this case, this
hypothesis is not applicable.

Similarly, we have the following hypothesis on the completeness of relations. Let
R(x1, x2) be a binary predicate, R(e1,1, e1,2), R(e2,1, e2,2), …, R(en,1, en,2) be the set of R
relations contained in the model.

− Hypothesis Rule 3: Completeness of relations. The hypothesis on the completeness
of relation R in the model can be generated as a formula in the following form.

∀x1,x2.R(x1,x2)−>((x1=e1,1)∧(x2=e1,2))∨((x1= e2,1)∧ (x2= e2,2))∨… ((x1= en,1)∧ (x2= en,2))

This hypothesis assumes that all relations of a certain type are specified in the model,
thus any additional relation in a system will be regarded as not satisfying the model.
For example, for the model in Fig. 2, we will specify the following formula, if we
believe all inheritance relations in the modelled system are depicted in the model.
∀x,y. specific(x,y)−>((x=ClerkUser)∧(y=Clerk))∨((x=CustomerUser)∧(y= Customer))

It is worth noting that the above hypothesis rules are just examples. They are by no
means considered as complete. The point here is the flexibility of UML for different
uses can be explicitly revealed through a set of optional hypothesis mappings. How
hypothesis rules are related to the use of the modelling language will be an interesting
practical problem for further research.

 A Formal Descriptive Semantics of UML 387

4 Semantics of Interaction and State Machine

Our approach to defining descriptive semantics is applicable on various types of UML
diagrams. This section defines the descriptive semantics of interaction diagram and
state machine. The same rules and process described in section 3 are applied. The
only difference is that their metamodels are connected to the metamodel of class dia-
gram. This section will focus on how to deal with such connections.

4.1 Integration of Metamodels

Fig. 3 shows a simplified metamodel of interaction diagram.

Inte ract ion

Life line M essage

+lifeline +message

ConnectableElem ent

+represents

M essageEv ent

SendOpera t ionEv ent SendSignalEventOpera t ion (from Kerne l) Signal (from Kerne l)

+operation +signal

+event

+sender

+receiver
+after

Behav iour Behav ioura lFeat ure (from Kerne l)Classifie r(from Kerne l)

+specification

+context

Ty pedElem ent(from k e rnel)

Fig. 3. Metamodel of Interaction Diagram

Metaclasses Operation, Signal, TypedElement, BehaviouralFeature and Classifier
in Fig. 3 were defined in the metamodel of class diagram in Fig. 1 as indicated by
‘from Kernel’ after their names. They are included in this metamodel to specify the
connection between the metamodels. For the associations that relate a metamodel to
external metaclasses, the rules for defining predicates and axioms differ from the or-
dinary rules. For example, in Fig. 3, the association operation denotes the correspon-
dence between SendOperationEvent in interaction diagram and Operation in class
diagram. Similarly, the association signal denotes the correspondence between Send-
SignalEvent in interaction diagram and Signal in class diagram. Thus, the Signature
Rule 2 is not applied on them. Instead, such correspondences are specified as axioms
about the related element types. The following two axioms are derived from associa-
tions operation and signal in Fig. 3, respectively.

∀x. SendOperationEvent(x) −> Operation(x)

∀x. SendSignalEvent(x) −> Signal(x)

Formally, we have the following general rule for generating axioms from cross meta-
model associations.

388 L. Shan and H. Zhu

− Axiom Rule 10: Cross metamodel association. For each cross metamodel associa-
tion from metaclass MA to external metaclass MB, we have an axiom in the form of
∀x. MA(x) −> MB(x).
Axioms for multiple-view UML models comprise the axioms for different types of

diagrams, which are separately derived from the respective metamodels. When the
different sets of axioms are integrated, the axioms about ‘completeness of specialisa-
tions’ have to be modified due to the overlap between the inheritance hierarchies in
the different metamodels. Formally,
− Axiom Rule 2’: Completeness of specialisations across metamodels. Let MA be a

metaclass depicted in two metamodels MM1 and MM2. Let metaclasses MB1, MB2,
…, MBk be the set of metaclasses that specialise MA in metamodel MM1, and MC1,
MC2, …, MCp be the set of metaclasses that specialise MA in metamodel MM2. We
have the following axiom when a model is defined by MM1 and MM2.

∀x. MA(x) -> MB1(x) ∨ … ∨ MBk(x) ∨ MC1(x) ∨ … ∨ MCp(x)

Take the specialisations of metaclass TypedElement in Fig. 1 and Fig. 3 as an exam-
ple. Axiom (1) below will be derived from Fig. 1 by applying Axiom Rule 2 for de-
fining the semantics of models that only contains class diagrams. Similarly, when a
model only contains sequence diagrams, axiom (2) will be used. When the model con-
tains both class diagrams and sequence diagrams, i.e. the models are defined by the
two interrelated metamodels, axiom (3) below will be used.

∀x. TypedElement(x) −> Parameter(x) ∨ StructuralFeature(x) (1)

∀x. TypedElement(x) −> ConnectableElement(x) (2)

∀x. TypedElement(x) −>
Parameter(x) ∨ StructuralFeature(x) ∨ ConnectableElement(x)

(3)

Sta teM achine

Prot oco lSt a teM achine Vert ex

St a te
PseudoSta te

+kind: PseudostateKind

Trans it ion

+vertex

+transition

+source

+target

Tr igger Const ra int

+trigger +guard

Protoco lConform ance

Direct edRe lat ionship(from Kerne l)

+generalMachine
+specificMachine

Behav iour (from Inte ract ion)

+exit +doActivity+entry

+effect

Pseudos ta teKind
<<enueration>>

+initial
+final
+deepHistory
+shallowHistory
+join
+fork
+junction
+choice

Behav iourSt at eM achine

Sta teBehav iour

Fig. 4. Metamodel of State Machine Diagram

 A Formal Descriptive Semantics of UML 389

The signature and axioms of state machine diagrams are derived from the metamodel
shown in Fig. 4 by applying the rules given in section 3 and section 4.1. Table 4
summarises the number of generated predicates, functions and axioms.

4.2 Translating Diagrams into First Order Logic Formulas

The translation rules given in section 3 are applied to sequence diagrams and state
machines to generate first order logic formulas. For example, the following formulas
are among those generated from the interaction diagram shown in Fig. 5 (A).

Message(buyTicket) , sender(buyTicket, c).

Below are some of the formulas generated from the state machine in Fig. 5 (B).
State(available), trigger(Transition7,refund), source(Transition7,unavailable).
Totally 1459 formulas were generated from the three diagrams of the model Tick-

eting Office.

Table 4. Summary of the signature and axioms defined for three types of diagrams

Class

Diagram
Interaction
Diagram

State
Machine

Abstract metaclasses 10 3 2
Concrete metaclasses 10 5 9

Unary
Predicate

Enumeration metaclasses 4 0 1
Binary Predicates 10 8 12
Functions 5 0 1

Signa-
ture

Enumeration constants 13 0 8
Inheritance relations 20 4 6
Completeness of specialisation 10 3 4
Completeness of classification 10 5 9
Valid application of binary predicates/functions 15 8 13

Axiom

Well-formedness rules 7 1 21

c : User b : BoxOffice t : Ticket s : Bank

buyTicket()

pay() charge()

buy()

available

unavailable

buyrefund

 (A) Sequence Diagram (B) State Machine Diagram

Fig. 5. Sequence Diagram and State Machine Diagram in the Model Ticketing Office

5 Consistency Check: An Application of Descriptive Semantics

The formal definition of UML semantics in our approach naturally facilitates reason-
ing about models. This section demonstrates the application of the descriptive seman-
tics in consistency checking of models.

390 L. Shan and H. Zhu

Aiming at rigorous modelling, great efforts have been made to define and check
models’ consistency [15-18], especially in the context of UML models [19-22]. With
the definition of model semantics in first order logic, checking the consistency of a
model is to prove that the formulas generated from the model are consistent in the
context of the axioms. Moreover, additional stronger consistency constraints can also
be specified in first order logic. The validity of such constraints, i.e. their consistency
with the axioms, can be formally proved.

5.1 Checking Consistency as Logical Inference

Let F be a set of formulas in a signature Sig. As in first order logic, if we can deduce
that F|−false, then F is inconsistent. Thus, we have the following definition.

Definition 6. (Logical consistency)
Let SemH(M) = AxmD∪ AxmF∪ F(M)∪ H(M) be the semantics of a model M. Model
M is said to be logically inconsistent in the semantic definition SemH(M) if
SemH(M)|−false; otherwise, we say that the model is logically consistent.

It is easy to see that a logically inconsistent model is not satsifiable in a subject do-
main whose interpretation of formulas is consistent with the logic system.

Definition 7. (Consistent interpretation of formulas in a subject domain)
Let Dom=<D, Sig, Eva> be a subject domain as defined in Definition 4. The interpre-
tation of formulas in signature Sig is consistent with first order logic if and only if for
all formulas q and p1, p2, …, pk that p1, p2, …, pk |− q, and for all systems s in D that
Eva(pi, s) =true for i=1,2,…, k, we always have Eva(q, s) =true.

Theorem 1. (Unsatisfiability of inconsistent model)
A model M that is logically inconsistent in the semantic definition SemH(M) is not
satisfiable on any subject domain whose interpretation of formulas is consistent with
first order logic.

Proof. We prove by contradiction. Let M be a logically inconsistent model, s be a
system in a subject domain Dom that satisfies the model according to the semantic
definition SemH(M). By Definition 5, for all formulas p in SemH(M), s|=p. By Defini-
tion 6, M is logically inconsistent means that SemH(M)|−false. By the property that the
interpretation of formulas in the subject domain Dom is consistent with the first order
logic, it follows (Definition 8) that s|=false. Thus, we find a contradiction. Therefore,
the theorem is true.

In the experiment, we used SPASS theorem prover to prove that each set of the for-
mulas generated from the three diagrams in the model Ticketing Office shown in
Fig. 2 and Fig. 5 are logically consistent. Their union is also consistent. Moreover, the
set of axioms for class diagrams, interaction diagrams and state machines are also
proven to be logically consistent. Thus, we have the following theorem.

Theorem 2. (Consistency of the axioms in semantics definition)
The sets of axioms generated from the metamodels for class diagrams, interaction dia-
grams and state machines are consistent as they are individually as well as together.

Proof. As stated above.

 A Formal Descriptive Semantics of UML 391

We have also made various minor changes to the diagrams in the model Ticketing
Office to demonstrate that some changes can lead to logically inconsistent set of for-
mulas, thus proved the existence of inconsistent models in UML according to our
semantic definition. Thus, it is feasible to check models’ consistency through logic
inferences based on descriptive semantics.

It is worth noting that, generally speaking, logical consistency does not guarantee
that the model is satsifiable in a subject domain.

5.2 Checking Consistency against Additional Constraints

In addition to checking the consistency of a model as described in the previous sub-
section, it is often desirable to check models against addition constraints. For exam-
ple, the following consistency constraint has been studied in the literature [23, 24]. It
states that a life line must represent an instance of a class.

∀x, y, z. Lifeline(x) ∧ represent(x,y) ∧ type(y, z) -> Class(z)

If a consistency constraint cannot be derived from the axioms, a model that is logi-
cally consistent does not necessarily satisfy the additional constraint. Thus, we have
the following notion of consistency with respect to a set of constraints.

Definition 8. (Consistency w.r.t. consistency constraints)
Given a set of consistency constraints C={c1, c2, …, cn}, the consistency of a model M
with respect to the constraints C under the semantics definition SemH(M) is the consis-
tency of the set U = SemH(M) ∪C of formulas. In particular, we say that a model fails
on a specific constraint ck, if SemH(M) is consistent, but SemH(M) ∪{ck} is not.

The following are some commonly used consistency constraints.

− Message represents operation call of the message receiver [23]. Formally,
∀x, y, z, u. Message(x) ∧ event(x,y) ∧ SendOperationCall(y)

∧ receiver(x,z) ∧ type(z, u)−> ownedOperation(u,y)
− The classifier of a message’s sender must be associated to the classifier of the

message’s receiver [23]. Formally,
∀x,y,z,u,v. Message(x) ∧ sender(x,y) ∧ type(y,u) ∧ receiver(x,z) ∧ type(z,v)

−> ∃ w,m,n. Association(w) ∧ memberEnd(w, m) ∧ memberEnd(w, n) ∧Associ-
ateTo(m, u) ∧ AssociateTo(n,v)

− Protocol transition refers to an operation (i.e., has a call trigger corresponding to
an operation), and that operation applies to the context classifier of the state ma-
chine of the protocol transition. Formally,

∀x,y,z. ProtocolStateMachine(x) ∧ transition(x,y) ∧ trigger(y,z)
∧ context(x,u) −> Operation(z) ∧ ownedOperation(u,z)

− The order of messages in interaction diagram must be consistent with the order of
triggers on transitions in state machine diagram [23, 25]

∀x,y,z,u.Message(x)∧event(x,z)∧Message(y)∧event(y,u)∧after(x,y)−>Trigs(z,u)

where Trigs(x,y) is an auxiliary predicate defined as follows.

392 L. Shan and H. Zhu

∀x,y,z,u,v. Transition(x) ∧ trigger(x,u) ∧ target(x,y) ∧Transition(z) ∧ trigger(z,v) ∧
source(z,y) −> Trigs(v,u)

∀x,y,z. Trigs (x,y) ∧ Trigs (y,z) −> Trigs (x,z)

In the above discussion, we have made an implicit assumption about the validity of
the constraints. Informally, a constraint is invalid if it conflicts with the semantics
axioms of the language and thus cannot be satisfied by any model. Here, we distin-
guish two types of validity: descriptive validity and functional validity.

Definition 9. (Validity of consistency constraints)
Let AD and AF be the sets of axioms for descriptive semantics and functional seman-
tics, respectively. A set C={c1, c2, …, cn} of consistency constraints is descriptively
valid if AD∪C is logically consistent. The set C of consistency constraints is function-
ally valid AD∪AF∪C is logically consistent.

We have conducted an experiment with the validity of consistency constraints using
SPASS. It is proved that the constraints given above are all descriptively valid.

A consistency constraint can be ineffective if it does not impose any additional re-
striction on models. This is true if the constraint can be deduced from the axioms in
first order logic. Thus, we have the following definition.

Definition 10. (Effectiveness of consistency constraints)
Let A be a set of semantics axioms. A set C={c1, c2, …, cn} of consistency constraints
is logically ineffective with respect to the set A of axioms if A |− C.

Obviously, if C is logically ineffective, a model logically consistent in the context of
axiom A will be consistent with respect to C.

The consistency constraints given above are all proven to be not ineffective.

6 Implementation of Semantics Translation Tool

By translating UML models into first order logic statements, reasoning about models
can be realised as logical inferences and automated by using a theorem prover. We
have designed and implemented a tool Translator to translate UML models to first
order logic statements. The tool is integrated with a modelling tool and a theorem
prover. Fig. 6 shows the structure and workflow of the tools.

Fig. 6. Process of formalising and reasoning UML models

 A Formal Descriptive Semantics of UML 393

Fig. 7. Snapshot of Translator

The input to Translator is UML models in XMI formats. StarUML [26], a UML
modelling tool, is used to generate XMI representation of UML models. The output of
our tool is a text file that is readable by SPASS, which is an automated theorem
prover for first order logic with equality. Fig. 7 gives a screen snapshot of Translator,
where XMI editor on the left displays the input XMI file and Logic editor on the right
displays the generated formulas in SPASS input format.

When SPASS is invoked with an input generated by Translator, the consistency of
the statements is inferred. In particular, it infers whether S|-false can be proved, where
S is the set of formulas including the axioms, hypothesis and formulas generated from
the model and optionally some consistency constraints. Since SPASS is refutationally
complete [27], if the set of statements in S is logically inconsistent, the system termi-
nates with ‘proof found’ and outputs a proof of false; otherwise if it terminates with
‘completion found’, which means no proof of false can be found, so S is logically
consistent.

We have used the tool to conduct a number of experiments on reasoning about in-
teresting properties of UML diagrams. These experiments include checking the con-
sistency of the axioms, checking model consistency without additional constraints and
with various additional constraints, checking consistency constraints’ validity and
effectiveness, etc. Details of the experiments will be reported separately.

7 Conclusion

The main contribution of this paper is three-fold. First, we introduced the notions of
descriptive semantics and functional semantics, and proposed a general framework for
separately defining these two aspects of semantics of modelling languages. Second,
we proposed a systematic technique to formally specify the descriptive semantics of
UML in first order logic, which include the rules for rigorously inducing first order
languages from metamodels, the rules for systematically deriving axioms from meta-
models, and the rules for automatic translating models into formulas. Third, we

394 L. Shan and H. Zhu

successfully applied the technique to UML class diagram, interaction diagram and
state machine. We also demonstrated the usefulness of the formal definition of de-
scriptive semantics by applying it to model consistency checking, and thus laid a logic
foundation for consistency checking.

Our approach has the following distinctive features in comparison with existing
methods, which are in complementary to ours in the sense that they mostly defined
the functional aspect of semantics.

First, our approach explicitly separates descriptive semantics from functional se-
mantics of modelling languages. This enables the definition of the descriptive aspect
of semantics to be abstract in the sense that it is independent of any subject domain.
This reflects the practical uses of UML that a same model describes both real world
systems and computer information systems.

Second, by introducing the notion of hypothesis in semantic definition, our ap-
proach achieves the flexibility of semantics of UML models, i.e. the same language is
used for various purposes in software development.

Third, the approach is practically useful as we demonstrated the successful applica-
tion of the approach on non-trivial subsets of class diagrams, interaction diagrams and
state machines. In particular, our approach provides a natural and nice solution to the
problem in defining multiple view modelling languages where each view is defined
by one metamodel and these meat-models are interconnected.

Moreover, the translation from UML models to semantics can be rigorously de-
fined. The translation for the subset of class diagram, interaction diagram and state
machine has been implemented and tested.

Finally, the semantic definition facilitates formal and automated reasoning about
models. We have demonstrated the application of such reasoning to a well-known
non-trivial problem of software modelling, i.e. consistency checking. Experiments
have shown promising results.

We are further researching on the definition of the functional semantics of UML in
a form that can be nicely linked to descriptive semantics reported in this paper. We
are also investigating logical properties of the semantic definitions.

In our investigation of UML semantics, we found a number of errors in its meta-
model. Some of them were corrected in the simplified metamodel presented in this
paper. More details will be reported separately.

Acknowledgement

The work reported in this paper was done during Lijun Shan’s visit at the Oxford
Brookes University, which is funded by China Scholarship Council. The project is
partly funded by the China Ministry of Science and Technology in the National Basic
Research Program (973 program) under the grant 2005CB321800 and the Foundation
of Postgraduate Innovation at National University of Defined Technology, China. The
authors are grateful to the members of the Applied Formal Methods research group at
the school of technology of Oxford Brookes University, especially Dr. Ian Bayley and
Mr Lamine Ouyahia, for numerous discussions on related topics.

 A Formal Descriptive Semantics of UML 395

References

1. SPASS, http://spass.mpi-inf.mpg.de/
2. Seidewitz, E.: What models mean. IEEE Software 20(5), 26–31 (2003)
3. OMG, Unified Modeling Language: Superstructure version 2.0. Object Management

Group (2005)
4. Kent, S., Evans, A., Rumpe, B.: UML Semantics FAQ. In: Moreira, A.M.D., Demeyer, S.

(eds.) ECOOP 1999 Workshops. LNCS, vol. 1743, pp. 33–56. Springer, Heidelberg (1999)
5. Evans, A., et al.: The UML as a Formal Modeling Notation. In: Bézivin, J., Muller, P.-A.

(eds.) UML 1998. LNCS, vol. 1618, pp. 325–334. Springer, Heidelberg (1999)
6. Amálio, N., Polack, F.: Comparison of Formalisation Approaches of UML Class Con-

structs in Z and Object-Z. In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS,
vol. 2651, pp. 339–358. Springer, Heidelberg (2003)

7. Berardi, D., Cal, A., Calvanese, D.: Reasoning on UML class diagrams Artificial Intelli-
gence 168(1), 70–118 (2005)

8. Varro, D.: A Formal Semantics of UML Statecharts by Model Transition Systems. In:
Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS,
vol. 2505, pp. 378–392. Springer, Heidelberg (2002)

9. Beeck, M.v.d.: A structured operational semantics for UML-statecharts. Softw. Syst.
Model 1, 130–141 (2002)

10. Reggio, G., Cerioli, M., Astesiano, E.: Towards a Rigorous Semantics of UML Supporting
Its Multiview Approach. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 171–
186. Springer, Heidelberg (2001)

11. Reggio, G., Astesiano, E., Choppy, C.: Casl-Ltl : A Casl Extension for Dynamic Reactive
Systems – Summary. Technical Report DISI-TR-99-34. DISI – Universit‘a di Genova, It-
aly (1999)

12. Kuske, S., et al.: An Integrated Semantics for UML Class, Object and State Diagrams
Based on Graph Transformation. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 11–28. Springer, Heidelberg (2002)

13. Snook, C., Butler, M.: UML-B: Formal Modeling and Design Aided by UML. ACM
Transactions on Software Engineering and Methodology 15(1), 92–122 (2006)

14. Moller, M., et al.: Linking CSP-OZ with UML and Java: A Case Study. In: Boiten, E.A.,
Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 267–286. Springer, Hei-
delberg (2004)

15. Nentwich, C., et al.: Flexible consistency checking. ACM Transactions on Software Engi-
neering and Methodology 12(1), 28–63 (2003)

16. Nentwich, C., et al.: xlinkit: a consistency checking and smart link generation service.
ACM Trans. Internet Techn. 2(2), 51–185 (2002)

17. Shan, L., Zhu, H.: Specifying consistency constraints for modelling languages. In: 18th In-
ternational Conference on Software Engineering and Knowledge Engineering (SEKE
2006), pp. 578–583. Knowledge Systems Institute, San Francisco (2006)

18. Shan, L., Zhu, H.: Consistency check in modeling multi-agent systems. In: 26th Interna-
tional Computer Software and Applications Conference (COMPSAC 2004), pp. 114–121.
IEEE Computer Society, Hong Kong (2004)

19. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing Consistency Checking between
Software Views. In: 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), pp. 169–180. IEEE Computer Society, Los Alamitos (2005)

396 L. Shan and H. Zhu

20. Rasch, H., Wehrheim, H.: Cheking Consistency in UML Diagrams: Classes and State Ma-
chines. In: Formal Methods for Open Object-Based Distributed Systems, pp. 229–243.
Springer, Heidelberg (2003)

21. Simmonds, J., Bastarrica, M.C.: A Tool for Automatic UML Model Consistency Check-
ing. In: ASE 2005, pp. 431–432. ACM, Long Beach (2005)

22. Straeten, R.V.D., et al.: Using Description Logic to Maintain Consistency between UML
Models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp.
326–340. Springer, Heidelberg (2003)

23. Egyed, A.: Instant Consistency Checking for the UML. In: ICSE 2006, Shanghai, China,
pp. 381–390 (2006)

24. Straeten, R.V.D., Simmonds, J., Mens, T.: Detecting Inconsistencies between UML Mod-
els Using Description Logic. In: Proceedings of the 2003 International Workshop on De-
scription Logics (DL 2003), Rome, Italy (2003)

25. Mens, T., Straeten, R.V.D., Simmonds, J.: Maintaining Consistency between UML Mod-
els with Description Logic Tools. In: ECOOP Workshop on Object-Oriented Reengineer-
ing (2003)

26. StarUML, http://staruml.sourceforge.net/en/
27. Weidenbach, C.: SPASS - Version 0.49. J. Autom. Reasoning 18(2), 247–252 (1997)

Author Index

Abrial, Jean-Raymond 25
Aguirre, Nazareno M. 207
Aktug, Irem 147

Butler, Michael 25

Cai, Chao 338
Cardiff, Brian J. 207
Chen, Jessica 66
Chin, Wei-Ngan 126
Craciun, Florin 126

Damchoom, Kriangsak 25
Dong, Jin Song 5, 318
Duan, Lihua 66
Duan, Zhenhua 167

Fontaine, Marc 278
Frias, Marcelo F. 207
Furia, Carlo A. 298
Futatsugi, Kokichi 187

Galeotti, Juan P. 207
Gibbons, Jeremy 355
Goldsmith, Michael 258
Gurov, Dilian 147

Hatcliff, John 3
Heimdahl, Mats P.E. 86, 226
Huisman, Marieke 147

Katayama, Takuya 1

Leuschel, Michael 278
Liu, Yang 5

Mehta, Farhad 238
Metzler, Björn 105
Moffat, Nick 258

Offutt, Jeff 2
Ogata, Kazuhiro 187

Ponzio, Pablo 207
Pradella, Matteo 298

Qin, Shengchao 126
Qiu, Zongyan 338

Rajan, Ajitha 86
Regis, Germán 207
Roscoe, Bill 258
Rossi, Matteo 298

Seifert, Dirk 45
Shan, Lijun 375
Staats, Matthew 86, 226
Sun, Jing 318
Sun, Jun 5, 318

Taguchi, Kenji 318
Tian, Cong 167

Wang, Hai H. 5
Wehrheim, Heike 105
Whalen, Michael 86
Wong, Peter Y.H. 355
Wonisch, Daniel 105

Yang, Hongli 338

Zhang, Xian 318
Zhao, Xiangpeng 338
Zhu, Hong 375

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	How Can We Make Industry Adopt Formal Methods?
	Programmers Ain’t Mathematicians, and Neither Are Testers
	Contract-Based Reasoning for Verification and Certification of Secure Information Flow Policies in Industrial Workflows
	References

	Specification and Verification
	Specifying and Verifying Event-Based Fairness Enhanced Systems
	Introduction
	Background
	Event Annotations
	Verification
	On-the-Fly Verification
	Partial Order Reduction
	Experiments

	Conclusion and Future Works
	References
	Appendix: Soundness Proofs

	Modelling and Proof of a Tree-Structured File System in Event-B and Rodin
	Introduction
	Event-B and the Rodin Platform
	An Informal Description of a Tree-Structured File System and Constraints
	AbstractModel
	Events
	First Refinement: Files and Directories
	Second Refinement: File Content
	Third Refinement: Permissions
	Proofs
	Comparison with Related Work
	Lessons and Conclusion
	References

	Testing
	Conformance Testing Based on UML State Machines
	Introduction and Related Work
	State Machines
	Example
	StateMachine Semantics

	Test Case Generation
	Conformance Relation for StateMachines
	Selecting Inputs for Test Case Generation
	Test Case Generation Algorithm
	Combining Test Sequences
	Evaluating the Test Process

	Experimental Results
	Summary and Outlook
	References

	An Approach to Testing with Embedded Context Using Model Checker
	Introduction
	Notational Background
	n-Port Finite State Machines
	Distinguishing Sequence and Test Sequence Construction

	Problem Description
	Test Generation with Context
	Test Generation Using Model Checking Tools
	Finding Transitions in \R
	Finding a Distinguishing Sequence

	An Application
	Related Work
	Conclusion and Final Remarks
	References

	Requirements Coverage as an Adequacy Measure for Conformance Testing
	Introduction
	Experiment
	Case Examples
	Test Suite Generation and Reduction
	Mutant Generation

	Experimental Results
	Statistical Analyses
	Threats to Validity

	Discussion
	Analysis - Hypothesis 1
	Analysis - Hypothesis 2

	Conclusions
	References

	Verification 1
	Decomposition for Compositional Verification
	Introduction
	Background and Example
	Decomposition of a Specification
	A Cut of a Dependence Graph
	Decomposition of a Specification
	Example Revisited
	Correctness of the Decomposition

	Implementation and Experimental Results
	Conclusion and Related Work
	References

	A Formal Soundness Proof of Region-Based Memory Management for Object-Oriented Paradigm
	Introduction
	Region Calculus
	Region Type System: Static Semantics
	Dynamic Semantics
	Extended Static Semantics
	Soundness Theorems
	Conclusion
	References

	Program Models for Compositional Verification
	Introduction
	A Framework for Compositional Verification
	Program Model
	Model Extraction
	Flow Graph Behaviour
	Properties over Flow Graphs
	Interface Characterisation
	Compositional Verification
	A Tool Set for Compositional Verification

	Instantiation: Exceptional Control Flow
	Program Model with Exceptions
	Extracting Flow Graphs with Exceptions from Java Classes
	Flow Graph Behaviour with Exceptions
	Properties over Flow Graphs with Exceptions
	Interface Characterisation of Flow Graphs with Exceptions

	Instantiation: Multi-threaded Control Flow
	Program Model with Multi-threading
	Extracting Flow Graphs from Multi-threaded Java Classes
	Flow Graph Behaviour with Multi-threading
	Properties over Flow Graphs with Multi-threading
	Interface Characterisation of Flow Graphs with Multi-threading

	Conclusion
	References

	Model Checking and Analysis
	A Unified Model Checking Approach with Projection Temporal Logic
	Introduction
	Projection Temporal Logic
	Modeling, Simulation and Verification Language
	Framing
	The MSVL Language
	Normal Forms and NFGs of MSVL

	Property Specification Language
	Propositional Projection Temporal Logic
	Normal Form and NFGs of PPTL Formulas

	Model Checking Approach with PTL Based on NFGs
	Basic Approach
	Model Checker
	Example

	Conclusion
	References
	Appendix A: Logic Laws of PTL
	Appendix B: Logic Laws of MSVL
	Appendix C: Finiteness of NFGs of MSVL Programs

	Formal Analysis of the Bakery Protocol with Consideration of Nonatomic Reads and Writes
	Introduction
	The Bakery Protocol
	CafeOBJ
	Observational Transition Systems (OTSs)
	Model and Specification of the Bakery Protocol
	Data Used
	Definition of Equivalence Predicate on Labels
	Assignments to Shared Variables
	Choice of Arguments in an Arbitrary Order
	Observers and Transitions
	Definitions of Transitions

	Verification Based on the Specification
	Formalization of the Mutual Exclusion Property
	Lemmas of the Verification
	Proof Score of inv1
	Proof Score of inv2
	Other Proof Scores

	Discussion
	Choice of Arguments in an Arbitrary Order
	Lemmas on Data

	Related Work
	Conclusion
	References

	Towards Abstraction for DynAlloy Specifications
	Introduction
	A Brief Introduction to Alloy and DynAlloy
	From JML–Annotated Java Code to DynAlloy
	SAT-Based Predicate Abstraction for DynAlloy Models
	Improving the Abstraction Based Analysis
	Program Atomisation
	Detection of Induction

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	Verification 2
	Partial Translation Verification for Untrusted Code-Generators
	Introduction
	Verification of Individual Translations
	Overview of Verification
	Prototype Implementation

	Application Results
	Sample Systems
	Results

	Related Work
	Conclusions
	References

	A Practical Approach to Partiality – A Proof Based Approach
	Introduction
	Predicate Calculus
	Basic Syntax
	Proof Rules for \v{FoPCe}
	Reasoning

	Defining Partial Functions
	Conditional Definitions
	Recursive Definitions
	A Running Example

	Separating WD and Validity
	The Well-Definedness Operator
	Defining \D
	Proving Properties about \D

	Well-Definedness and Proof
	Defining \D for Sequents
	Well-Defined Sequents
	WD Preserving Proof Rules
	Deriving $\v{FoPCe}_{_\D}$
	Summary

	Proving ${\sf WD\subD}$ and ${\sf Validity\subD}$
	Related Work
	Comparison

	Conclusion
	References

	A Representative Function Approach to Symmetry Exploitation for CSP Refinement Checking
	Introduction
	CSP Language, Refinement, LTSs and Refinement Checking
	CSP and Refinement
	Labelled Transition Systems
	Refinement Checking

	CSP Symmetry and Permutation Bisimulations
	Algebraic and Denotational Permutation Symmetry
	Operational Permutation Symmetry
	Group Symmetry

	Symmetry and Temporal Logic Model Checking
	Structured Machines and Their Symmetries
	Structured Machines
	Structured Machine Symmetries

	Basic Symmetry Exploiting Algorithm
	TwistedCheck
	SymCheck1
	Method $sortrep$

	Extensions
	SymCheck2
	SymCheck3

	Experimental Results
	Conclusions
	References
	Appendix: Theory

	Tools
	Probing the Depths of CSP-M: A New fdr-Compliant Validation Too
	Introduction
	Challenges of Validating CSP-M
	The CSP-M Prolog Interpreter
	The New Parser in Haskell
	Ensuring Compliance Via Refinement Checking
	Empirical Evaluation
	More Related Work, Discussion and Conclusion
	References
	A Some Benchmark Files

	Practical Automated Partial Verification of Multi-paradigm Real-Time Models
	Introduction
	Related Work

	Preliminaries and Definitions
	Behaviors
	Metric Temporal Logic
	OperationalModel: Timed Automata
	Discrete-Time Approximations of Continuous-Time Specifications

	Formalizing Timed Automata in MTL
	Discrete-Time Approximations of Timed Automata
	Under-Approximation
	Over-Approximation
	Summary

	Implementation and Example
	A Communication Protocol Example
	Experimental Evaluation

	Conclusion
	References

	Application of Formal Methods
	Specifying and Verifying Sensor Networks: An Experiment of Formal Methods
	Introduction
	Specifying Sensor Networks
	Operational Semantics
	Case Studies
	The Trickle Algorithm
	Face Routing Protocols

	Conclusion
	References
	Appendix A: Basic Operational Semantics
	Appendix B: Operational Rules for Inter-sensor Messaging

	Correct Channel Passing by Construction
	Introduction
	A Conversation Language
	Syntax
	Semantics

	A Peer Language
	Syntax
	Semantics

	A Top-Down Design Approach
	Projection
	Relation between Conversation and Generated Peers

	Case Study
	Related Work
	Conclusion and Future Work
	References
	Appendix: Proofs of Some Theorems

	Semantics
	A Process Semantics for BPMN
	Introduction
	Notation
	BPMN
	Z
	CSP

	Syntactic Description of BPMN
	Abstract Syntax
	An Example

	Behavioural Semantics of BPMN
	Alphabets
	Processes Corresponding to Diagrams
	Processes Corresponding to Gateways
	Processes Corresponding to Transitions, Types and States

	Revisiting the Example
	Semantics of the Airline Reservation Application
	Verifying Consistency of the Airline Reservation System

	Conclusion
	References

	A Formal Descriptive Semantics of UML
	Introduction
	Proposed Approach
	Basic Concepts
	Related Work
	Outline of the Proposed Approach

	Descriptive Semantics of Class Diagram
	Metamodel
	Derivation of Signature
	Axioms
	Translating Models into First Order Logic Formulas

	Semantics of Interaction and State Machine
	Integration of Metamodels
	Translating Diagrams into First Order Logic Formulas

	Consistency Check: An Application of Descriptive Semantics
	Checking Consistency as Logical Inference
	Checking Consistency against Additional Constraints

	Implementation of Semantics Translation Tool
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

